set of (Fregean) reducible functions. Here, we crucially make use of the fact that \(C_X = C_X \neq C_Y \) (cf. (11)). Further, it is noted that the non-constituent coordinations (including gapping) provide much expressive power that allows for natural languages to go far beyond the Fregean reducible functions.

Gapped sentences are treated as coordination of unbalanced materials which are assigned the same type via Value Lifting (cf. (17)) and Constant Lifting (cf. (26)). More importantly, our grammar rules out unacceptable split gappings correctly.

References

Scrambling and Conditions on A-Movement
Naoko Nemoto
University of Connecticut

0. Introduction

The nature of scrambling has been deliberated in the literature. Recently, Kuroda (1986) raised a theoretical possibility that scrambling can be A-movement, by arguing that scrambling is a movement to the Spec of IP. Mahajan (1988) indeed provided a set of relevant data in Hindi which shows that scrambling can be A or A'-movement. Similar observations have been also reported in Japanese by Deprez (1990), Miyagawa (1991), Saito (1991), and Tada (1990).

In the present work, I will explore what the distribution of A-scrambling can say about conditions on A-movement. Cases of illicit A-movement have been analyzed in terms of independent principles such as Condition A, the ECP, the Locality Condition on Chain, (Lasnik 1985) (henceforth the LCC), and the Uniformity Condition (Chomsky 1986a). None of these conditions by itself accounts for the range of A-movement, however. Moreover, there is a certain degree of redundancy as noted in Chomsky (1986a:181). On the other hand, such a case as (1), which is due to Mark Baker, appears to violate none of the conditions above.

(1) John sees [that [it is told [that [Mary is a genius]]]]

In this example, the trace is lexically governed by told since it is assigned a 0-role by told; the ECP is satisfied. The trace is locally bound by a successive member of the chain: the LCC is also satisfied. The moved phrase receives a structural Case: the Uniformity Condition is, thus, irrelevant. Moreover, (1) is not a simple Binding Condition violation since it is known that an explicative and the corresponding AGR constitute only weak accessible subjects.

Chomsky (1985b) proposes to analyze (1) in terms of a condition on chains, what he calls antecedent government, which requires for each link of an A-chain to be

1 The ECP in this paper denotes a "disjunctive" formulation, as in Lasnik and Saito (1990). See footnote 6.
2 The Locality Condition on Chain
 (Lasnik 1985)
 Where \(0 \), \(0 + 1 \) are successive members of a chain, \(0 \) must locally bind \(0 + 1 \).
 This condition was proposed in Chomsky (1981:333) and argued for by Lasnik and also by Rizzi (1988).
3 The Uniformity Condition
 (Chomsky 1986a:194)
 If \(a \) is an inherent Case-marker, then \(a \) Case-marks NP if and only if \(a \) 0-marks
 the chain headed by NP.
Scrambling and Conditions on A-Movement / 351

O-subjacent. He suggests to require antecedent government on NP traces regardless of whether or not they are lexically governed.\footnote{Lasnik and Saito (1990), on the other hand, attempt to account for such a case as (1) by proposing to extend Chomsky’s Unifiﬁcity Condition. They deﬁne their version, the Extended Unifiﬁcity Condition, (henceforth, the EUC) in terms of 0-role assignment instead of inherent Case. The EUC is deﬁned in (2).\footnote{Lasnik and Saito (1990) propose to extend Chomsky’s Unifiﬁcity Condition. They deﬁne their version, the Extended Unifiﬁcity Condition, (henceforth, the EUC) in terms of 0-role assignment instead of inherent Case. The EUC is deﬁned in (2).\footnote{Lasnik and Saito (1990) propose to extend Chomsky’s Unifiﬁcity Condition. They deﬁne their version, the Extended Unifiﬁcity Condition, (henceforth, the EUC) in terms of 0-role assignment instead of inherent Case. The EUC is deﬁned in (2).}}

Suppose \(\beta \) bears a 0-role assigned by \(\alpha \). Then, if \(\gamma \) is a barrier for \(\alpha \), \(\gamma \) dominates \(\beta \).

Lasnik and Saito further observe that the EUC independently accounts for the range of illicit A-movement which has been analyzed in terms of the other independent conditions listed above. Chomsky’s (1986b) approach and Lasnik and Saito’s (1990) approach are analogous in the sense that both appeal to the notion of barriers to account for illicit A-movement.

The purpose of the present work is to support such an approach in the light of Mahajan’s hypothesis that scrambling can be a case of A-movement. More speciﬁcally, I will demonstrate that none of the conditions among Condition A, the LCC, the ECP, or the Unifﬁcity Condition explains the distribution of A-scrambling in Japanese. I will, then, show that the EUC accounts for the type of the examples which have been discussed in Mahajan (1988). Second, I will present a case of long distance A-scrambling which cannot be accounted for by the EUC. I will, thus, propose to reformulate the EUC into a condition on A-chains to account for the apparent counterexample. Moreover, I will argue that the condition on A-chains which I propose in this paper amounts Chomsky’s (1986b) formulation of antecedent government within the theory developed by Lasnik and Saito (1990). In this paper, I will assume the theory of barriers, Subjacency, and the ECP in Lasnik and Saito (1990).\footnote{Lasnik and Saito (1990) propose to extend Chomsky’s Unifiﬁcity Condition. They deﬁne their version, the Extended Unifiﬁcity Condition, (henceforth, the EUC) in terms of 0-role assignment instead of inherent Case. The EUC is deﬁned in (2).\footnote{Lasnik and Saito (1990) propose to extend Chomsky’s Unifiﬁcity Condition. They deﬁne their version, the Extended Unifiﬁcity Condition, (henceforth, the EUC) in terms of 0-role assignment instead of inherent Case. The EUC is deﬁned in (2).}}

1. The Extended Uniformity Condition on I illicit A-Movement

I will ﬁrst present Lasnik and Saito’s (1990) observation that the EUC independently accounts for the cases which have been analyzed in terms of the other conditions. Observe (3).

(3a) a. \(\text{John} \) seems \([\text{CP} \] \text{that} [\text{IP} \text{Mary likes} \text{t}_1] \)
(3b) b. \(\text{John} \) seems \([\text{CP} \] \text{that} [\text{IP} \text{he likes} \text{t}_1] \)
(3c. \(\text{John’s stories} \) \text{ip about} [\text{IP} \text{pictures} \text{t}_1] \)

These examples imply that the EUC accounts for the case where the subject is a direct object of the main verb.

We will now examine cases involving scrambling. To begin, I will brieﬂy outline Mahajan’s (1986) observation to the extent that it is relevant to the present work, using Japanese data.

Mahajan (1988) observes that in Hindi, clause-inertial scrambling can be A-movement, whereas long distance scrambling cannot.\footnote{Lasnik and Saito (1990) propose to extend Chomsky’s Unifiﬁcity Condition. They deﬁne their version, the Extended Unifiﬁcity Condition, (henceforth, the EUC) in terms of 0-role assignment instead of inherent Case. The EUC is deﬁned in (2).\footnote{Lasnik and Saito (1990) propose to extend Chomsky’s Unifiﬁcity Condition. They deﬁne their version, the Extended Unifiﬁcity Condition, (henceforth, the EUC) in terms of 0-role assignment instead of inherent Case. The EUC is deﬁned in (2).}}

One piece of evidence that Mahajan presents to argue that clause-inertial scrambling can be A-movement is that the former can “remedy” a Condition A violation.\footnote{Lasnik and Saito (1990) propose to extend Chomsky’s Unifiﬁcity Condition. They deﬁne their version, the Extended Unifiﬁcity Condition, (henceforth, the EUC) in terms of 0-role assignment instead of inherent Case. The EUC is deﬁned in (2).\footnote{Lasnik and Saito (1990) propose to extend Chomsky’s Unifiﬁcity Condition. They deﬁne their version, the Extended Unifiﬁcity Condition, (henceforth, the EUC) in terms of 0-role assignment instead of inherent Case. The EUC is deﬁned in (2).}}

The same phenomena can be observed in the following examples in Japanese, cited from Saito (1991).

(4a) a. \(\text{Masa-ga otogai-no sensen-i-kara er-a-syookusaisita} \) \(\text{nom each other’s teacher-dat} \) they-acc introduced ‘Masao introduced to each other’s teacher-them.’
(4b) b. \(\text{karera-a} \) \(\text{[Masa-ga otogai-no sensen-i-t}_1 \text{syokusaisita} \) acc \(\text{nom each other’s teacher-dat} \) introduced ‘Them, Masao introduced \text{t}_1 \text{to each other’s teacher.’}
(4c) c. \(\text{karera-a} \) \(\text{[Masa-ga otogai-no sensen-i-t}_1 \text{they-acc} \) \(\text{nom each other’s teacher-dat} \) \(\text{nom} \) criticizedCOMP \(\text{nom each other’s teacher that Masao criticized them.’} \)
(4d) d. \(\text{karera-a} \) \(\text{[Masa-ga otogai-no sensen-i-t}_1 \text{they-acc} \) \(\text{nom each other’s teacher-dat} \) \(\text{nom} \) criticizedCOMP \(\text{nom each other’s teacher that Masao criticized them.’} \)

In (g) examples, \(\text{otogai} \) (each other) is not bound; therefore, Condition A is violated.\footnote{Lasnik and Saito (1990) propose to extend Chomsky’s Unifiﬁcity Condition. They deﬁne their version, the Extended Unifiﬁcity Condition, (henceforth, the EUC) in terms of 0-role assignment instead of inherent Case. The EUC is deﬁned in (2).\footnote{Lasnik and Saito (1990) propose to extend Chomsky’s Unifiﬁcity Condition. They deﬁne their version, the Extended Unifiﬁcity Condition, (henceforth, the EUC) in terms of 0-role assignment instead of inherent Case. The EUC is deﬁned in (2).}}

In (4b), a case of clause-inertial scrambling, as the intended binder is scrambled and c-commands the anaphor, the grammaticality of the sentence improves. This suggests that in (4b), the anaphor is bound by the scrambled phrase and Condition A is
satisfied. This is only expected if the movement is to an A-position; therefore, Mahajan argues that clause-internal scrambling can be A-movement. A question arises as to where the scrambled phrase lands. Kuroda (1986) argues that in Japanese the subject can stay within VP and the Spec of IP, an A-position, is available for scrambling. Let us adopt this hypothesis here. Under this hypothesis, (4b) will be illustrated as follows.

(6) $\text{IP}_x [\text{Y-nom} ... \ t_1 ... \ V]$

In (5b), a case of long distance scrambling, the grammaticality does not improve significantly even the intended binder is scrambled and c-commanded the anaphor. (4b) and (5b) differ only in that the former involves clause-internal scrambling, whereas the latter involves long distance scrambling. Hence, Mahajan (1988) argues that long distance scrambling cannot be A-movement. Our issue here is then, what prevents a successive cyclic A-scrambling as in (7).

(7) $\text{IP}_x [\text{Y-nom} ... [\text{CP} [\text{IP}_t [\text{Y-nom} ... \text{V}]]]]$

Since scrambling does not involve inherent Case assignment, the Uniformity Condition is irrelevant. Each member of the chain is locally bound by a successive member of the chain in (7); the LCC is not violated. The initial trace is lexically governed, being an object trace. A question arises about the ECP status of t_1 in (7). Since the IP which immediately dominates t_1 constitutes a barrier, not being L-marked, in order for this trace to be antecedent governed, there must be a proper governor in CP, the maximal projection immediately dominating the IP. Note, however, that A-movement cannot go through an A'-position. This type of movement is known as "improper movement" and yields a Condition C violation. There is a possibility that the Spec of IP is lexically governed in Japanese, but it is well known that Japanese has multiple subject constructions as discussed in Kuno (1973). A representative example is cited below.

(8) yama-ga ki-ga kirei desu

mountain-nom tall-nom beautiful-is

"It is mountain where trees are beautiful."

Let us assume that "additional" subjects are base-generated in the Spec of IP's, following Saito (1982). Then, the well-formedness of the following example, cited from Kitagawa (1986:230), suggests the possibility that this position is properly governed.

(9) keiso-byou'in de wa lip [dare-ga [na-ga kingdom-nom]-ta] gen'in-ga hospital at lip who-nom eyes-nom loss=at::sight=past cause-nom

kabe-ni-deki-nai-ni no desu ka

could=not=figure=out if

"At Keio Hospital, about who couldn't they figure out the cause for his eyes losing sight?"

If the "additional" subject dare-ga "who-nom" is not lexically governed, we expect that the LF wh-extraction from Complex NP as (9) yields an ECP violation. *Now if we follow Saito (1989) and assume that the Spec of IP is for both "additional" subjects and scrambled phrases, it follows that there is a possibility that t_1 is lexically governed. Consequently, we cannot appeal to the ECP to rule out (7).

The next question is whether or not Condition A is violated in (7). Indeed Mahajan (1988) argues that Condition A to rule out cases such as (5b). The initial trace will be bound by the intermediate trace. However, Mahajan claims that the intermediate trace t_1 will not be bound within its governing category.

The situation is, however, more complicated in Japanese as noted in Saito (1981), since in Japanese anaphors do not observe the NIC effect (see Yang 1983 and Kitagawa 1986), unlike in Hindi. Moreover, Japanese has multiple subjects as we saw in (8). Hence, the following example is well-formed.

(10) John-to Mary-ga Honako-kara [otagai-ga [selseki-ga itiban yokattara] man-nom -dat each other-nom score-nom best=was to] ittita

comp said

"John and Mary said to Honako that it was each other whose score was the best."

(10) will be illustrated as follows under the Kuroda's system.

(11) $\text{IP}_y [\text{Y-nom} [\text{IP}_z [\text{Y-nom} [\text{IP} ... [\text{IP}]]]]]

It appears, then, that the governing category of the anaphor in the embedded IP extends to the matrix clause. Note that in (7), we cannot expect Y-nom to be a "specified subject" and prevent x_1 from binding t_1. This is because under the Condition A approach, t_1 must be bound by x_1 in (6) and that implies that x_1 does not behave as a specified subject. Therefore, in (7), the governing category for t_1 is the matrix IP, and hence we may argue that x_1 binds t_1. Consequently, Condition A is not violated. Note also that as observed in Mahajan (1986) and Tada (1980), scrambling of the direct object to the position between the subject and the indirect object can be A-movement as shown in (12).

(12) Masso-ga karae-ga otagai-no sensei-ni t_2 syoukaisita

nurse-nom to teacher-nom t_2 convoked

Masso introduced them to each other's teacher.

Given that, nothing will prevent the following derivation for (5b).

(13) $\text{IP}_y [\text{Y-nom} [\text{IP}_z [\text{Y-nom} [\text{IP}_x [\text{Y-nom} ... \text{V}]]]]]

Since NP-nom is within the governing category of t_1, t_1 is definitely within the governing category of t_2. Moreover, t_2 c-commands the indirect object as shown in (12), and the indirect object c-commands t_1. Therefore, t_2 c-commands t_1, and since they are coreferential, t_1 binds t_2. Consequently, Condition A is not violated and Condition A cannot rule out (5b).

We observed that none of the conditions among the Uniformity Condition, the LCC, the ECP, and Condition A can exclude (7). Note that (7) shares certain features with (1): A-movement in both cases crosses a barrier. Therefore, we expect that the EUC to account for (7). Observe (6) and (7) again. The EUC is not violated in (6). In (6), the scrambled phrase bears a b-role assigned by a verb; IP is a barrier for the verb and the IP dominates the scrambled phrase. The EUC is violated in (7); however, in (7), the scrambled phrase bears a b-role assigned by an embedded verb; the IP is a barrier for the verb and the IP does not dominate the scrambled phrase. The contrast displayed in (4b) and (5b) can be, thus, attributed to the EUC.

3. Long Distance A-Scrambling and the Extended Uniformity Condition

We observed that long distance scrambling out of finite clauses cannot be A-movement. On the other hand, Mahajan (1988) notes that in Hindi, long distance scrambling out of infinitive clauses can be A-movement. As we will directly see in
The examples in (17) show that the LF extraction of naze "why" as well as doo "how" out of complex NP constructions yields an ECP violation, as opposed to nani "what", whose trace is lexically governed, being an object. Therefore, we expect that naze and doo behave the same with respect to the ECP. Then, the contrast shown in (18) is unexpected. The intended reading here is the one in which wh is extracted from the embedded clause as indicated in English translations.

(18a) a. John-va Bill-ni doo sono syoh-e zitesuru yonoi litte-no -top -dat that prize-acc turn down COMP told-o 'How did John tell Bill to turn down the prize t1?'

b. John-va Bill-ni naze sono syoh-e zitesuru yonoi litte-no -top -dat why that prize-acc turn down COMP told-o 'Why did John tell Bill to turn down the prize t1?'

(18b) clearly contrasts with the English equivalent given in (19).

(19) Why did John tell Bill [CP to turn down the prize t1]

Note that at least in English, why is considered to be an IP adjunct, whereas how is considered to be a VP adjunct. Kayne (1972) notes the following contrasts, for example:

(20) a. why not, How not, when not, where not
b. certainly not, probably not

(19b) shows that why behaves like a sentential adverb in this sense, while how does not. Suppose that this is also the case in Japanese. Then, if a Control complement lacks an IP node in Japanese, we can account for the contrast displayed in (18b), which is otherwise mysterious. In other words, there is no position for naze "why" to adjoin in Control complements. Hence, the contrast supports the hypothesis that (16) is the structure of Control constructions in Japanese.

Now assuming (16) as the structure of Control constructions, there arises a possibility of distinguishing Control complements from finite clauses in terms of barriers in Japanese. In particular, the conclusion that Lasnik and Saito (1980) reached that VP does not constitute a barrier, while IP constitutes a barrier when not L-marked raises an interesting possibility. That is, given Lasnik and Saito's formulation of barriers (see footnote 6) and (16) as the structure of Control constructions in Japanese, the EUC correctly predicts the well-formedness of (14b). Control complements in the cases like (14) do not contain any barrier in Japanese since VP's do not constitute a barrier by definition and CP is L-marked. In (14b), the scrambled phrase bears a 6-role assigned by the embedded verb; the matrix IP is a barrier for the verb and the IP dominates the scrambled phrase. Consequently, the EUC is not violated, and hence, the well-formedness of (14b) is predicted.

4. Reformulating the Extended Uniformity Condition

It is known that some Japanese Control verbs take a complex NP complement. Kokoromi "to attempt" is one of them. Moreover, as observed in (21), scrambling out of a complex NP complement of a Control verb can behave like A-movement.

(21) John and Bob-1's [Cap etagai-1 no naze tokyo-o ga [PRo2 t1] rikaisyo-koto-e kokoromi. -top -acc each other's father-nom understand fact-acc attempted (16b.) John and Bob-1, each other's father attempted to understand t1.'
This fact is especially interesting to us since a complex NP constructions has been assumed to consist of a barrier. For example, the "intermediate" status of such cases as (22), cited from Chomsky (1980b:35) is traditionally attributed to Subjacency.

(22) I think books did John announce [NP a plan [PP to read t1]]

Chomsky (1986c) suggests that CP is a barrier due to oblique Case assignment by the head N. If so, in (21) too, CP constitutes a barrier. Then, the EUC incorrectly excludes (21).

Here I propose to reformulate the EUC into a condition on A-chains stated in (23) to include such cases, appealing to the possibility that the Spec of NP is available for A-movement.18

(23) Suppose (ω1, ω2, ..., ωn) is an A-chain. Then, if t1 is a barrier for ω1 (i.e., the maximal projection immediately dominating t1) dominates ω1.

Now given (23), observe (21) again. In (21), CP is a barrier for an initial trace; however, the maximal projection immediately dominating CP, namely NP, dominates a successive member of the chain. Therefore, the link of the chain is well-formed. The matrix IP is a barrier for the initial trace; however, the IP dominates a successive member of the chain, namely the scrambled phrase. Therefore, (23) correctly predicts that the whole chain is well-formed.

Let us, then, examine whether or not (23) accounts for the same range of illicit A-movement as the EUC. First of all, (23) correctly excludes (1) as well as (5b). They are the type of example which we crucially appealed to the EUC to rule out. In those examples, the embedded IP is a barrier for the initial trace and the maximal projection immediately dominating the IP, namely CP, does not dominate a successive member of the chain since A-movement cannot go through the Spec of CP as we noted above. Second, we will examine whether or not (23) accounts for the examples in (3), which have been analyzed in terms of the other independent conditions such as the ECP, Condition A, the LCC, and the Uniqueness Condition. Observe (3) again.

(3) a. John seems [CP (that) [IPt1 it is believed t1 to be intelligent]]
b. John seems [CP (that) [IPt1 Mary likes t1]]
c. John seems [CP (that) [IPt1 he likes t1]]
d. John's stories [PP about [IPt1 pictures t1]]

In (3a-c), IPt1 is the barrier for the trace: the maximal projection immediately dominating IPt1, namely CP, does not dominate a successive member of the chain. Consequently, (23) is violated. In the case of (3d), IPt1 is a barrier for the trace due to oblique Case assignment. Note, however, that we must crucially prohibit the movement of a trace from going through the Spec of PP, if there is such a position. Even though IPt1 is a barrier, if the movement can involve the maximal projection immediately dominating IPt1, namely PP, (23) as opposed to the EUC, incorrectly predicts the chain is well-formed.

In fact, the reformulation of the EUC into a chain condition is suggested in Lasnik and Saito (1990) to exclude cases of expletive illicit A-movement such as (i) along with the other cases.

(i) There is a book that is likely t1 to be a riot.

However, their version, which is given in (ii), excludes (21).

(ii) Suppose (ω1, ω2, ..., ωn) is an A-chain. Then, if t1 is a barrier for ω1, then γ dominates ω1.

We, hence, need (23). Moreover, we will see, (23) accounts for the range of illicit A-movement; therefore, (23) replaces (i). In Nemoto (1991), I argue that the reformulation of the EUC to (23) is independently needed if we adopt the DP hypothesis.

However, it appears that in general, the Spec of PP should not be available as an "escape hatch'; otherwise, we cannot attribute the "intermediate" status of the following case to Subjacency, for example.

(24) I think you hear stories [PP about [IPt1 pictures of t1]]

In (24) the NP constitutes a barrier due to oblique Case assignment. If the Spec of PP is not available for movement, the initial trace will not be subjacent to any successive member of the chain. Subjacency will be, thus, violated. On the other hand, if PP in (24) cannot be a barrier. If the PP is a barrier and yields Subjacency violation, we expect (25) to have the same grammatical status as (24).

(25) I think you hear a story [PP about t1]

However, (25) is fully grammatical. Therefore, we need the stipulation that the Spec of PP is not available for movement.19 With this stipulation, which we need independently, NP is a barrier for the initial trace and the maximal projection immediately dominating NP, namely PP, does not dominate a successive member of the chain. Hence, (23) accounts for the range of illicit A-movement given in (3), and can replace the EUC.

Note, furthermore, that given Lasnik and Saito's (1990) formulation of Subjacency (see footnote 6), (23) amounts to saying that each link of an A-chain must be subjacent and is this what Chomsky (1986b) calls antecedent government even though the formulation of barriers and Subjacency is not the same.20

5. Conclusion

In this paper, first, I argued for the EUC to account for the distribution of A-scrambling in Japanese, showing that none of the conditions among the ECP, the LCC, Condition A, or the Uniqueness Condition explains it. Second, I argued that as the EUC reformulated into the Condition on A-chains (23), the case of long distance A-scrambling which is incorrectly ruled out by the EUC can be accounted for. I also showed that (23) accounts for the same range of the data as the EUC. Therefore, (23) can replace the EUC.

Interestingly enough, (23) analogous to Chomsky's (1986b) formulation of antecedent government. In other words, the distribution of A-scrambling in Japanese not only motivates such an approach but also suggests that Chomsky's (1986b) claim Lasnik and Saito must be 0-subjacent holds within the theory developed by Lasnik and Saito (1990).

Acknowledgement

I am very grateful to Howard Lasnik and Mamoru Saito for helpful comments, suggestions and especially their guidance throughout this project. I also benefited from discussions with Jun Abe, Jiu-Yung Cho, Jeong-Shik Lee, Javier Ormazabal, Myriam Urdu-Elkebabir, and especially Hiroto Hoshi. Thanks also go to Ema Bar-Shalom for her help. Needless to say, all shortcomings are mine.

18 See Nemoto (1991) for some discussions on this issue.

19 Since Lasnik and Saito (1990) define their formulation of antecedent government in terms of subjacency (see footnote 6). In this sense too, we come closer to "the antecedent government approach" for illicit A-movement. See Nemoto (1991) for some discussions.
Spreading in the Acquisition of Universal Quantifiers

William Philip
University of Massachusetts, Amherst

This paper concerns a peculiar phenomenon associated with universal quantification in child language—a phenomenon that I will refer to theory-neutrally as QUANTIFIER SPREADING. I will be making two claims: (i) that spreading is linguistic in etiology, and (ii) that it follows from the child's tendency to quantify over events rather than over individual objects.

1. The Phenomenon

Quantifier spreading is found primarily with preschool and kindergarten children (ages 4 to 6) and consists in an insistence on symmetrical distribution. For instance, if shown the picture in (1.a) and asked Is every girl riding an elephant?, the spreading child will answer 'no' and justify the response by referring to the extra, rider-less elephant. Likewise for (1.b) the question Is every cat waving in a box? elicits a negative reply because of the extra box. These responses do not merely reflect an ignorance of the quantificational force of every, however, since the same child answers just like an adult to control items such as in (1.c).

(1) a.

adult: Is every girl riding an elephant?

child: No.

adult: Why do you say 'no'?

child: Because that one isn't.

(points to elephant)