1. Introduction

The main topic of this paper is a type of ambiguity of pronominal interpretation in VP ellipsis, as exemplified in (1).¹

(1) Peter walked his dog, and Dan did [e], too.

The second conjunct has two possible interpretations: either Dan walked Peter's dog (the strict reading) or he walked his own dog (the sloppy reading). The classic Sag/Williams analysis (Sag 1976, Williams 1977) uses Partee's (1972) Derived VP rule which turns a VP into a λ-expression. The

¹ I would like to thank Irene Heim, Kyle Johnson, Angelika Kratzer, Barbara Partee, and the audience at WCCFL 14 for their valuable comments and criticisms. All the remaining errors are my own. This paper was partially supported by the U.S.-Czech/Slovak Science and Technology Joint Fund in cooperation with Ministry of Education of Czech Republic under Project Number 920 58.

Throughout this paper, I will use [e] to indicate an elided VP.
VP of the first conjunct in (1) can be turned into either (2a) or (2b).

(2) a. \(\lambda x. \text{walked}(\text{Peter's dog}) \)
 b. \(\lambda x. \text{walked}(x's \text{ dog}) \)

In (2a), the pronoun refers to Peter, while it is a variable bound by the \(\lambda \) operator in (2b). The constraint on the missing VP is such that it must have the same \(\lambda \)-expression as the antecedent VP. When (2a) is the meaning of the missing VP, it has the strict reading, whereas (2b) gives the sloppy reading.

The inadequacy of this Derived VP rule based analysis becomes apparent, once a wider range of examples are examined. Specifically, the Sag/Williams analysis incorrectly predicts that the sloppy reading is possible only with respect to the subject of a missing VP. Contrary to their prediction, the following examples allow sloppy readings.\(^2\)

(3) John's mother loves him, and Bill's mother does [e], too.
(4) Residents in New York hate its subway system, and residents in Tokyo do [e], too.

Interestingly enough, the same structural configuration allows a quantifier to bind the pronoun, as shown in (5) and (6).

(5) Every boy's mother loves him.
(6) Some residents in every city, hate its, subway system.

These facts led May (1985) to argue that the antecedent NPs in (3) - (4) raise high enough at LF to bind the pronouns. The details of May's analysis are not the central concern here, but the important generalization is that a sloppy reading of an elided pronoun is possible when the structural relationship between the pronoun and its antecedent allows variable binding.\(^3\)

\(^2\) As far as I know, Lasnik (1976, Appendix) is the first to discuss examples involving genitive-marked antecedents, such as (3) and (5). However, according to Lasnik's judgement, (3) has only the strict reading, and (5) does not allow the bound variable reading. The native speakers I consulted with judged otherwise, and I will proceed with the assumption that Lasnik's judgement does not represent the majority of the native English speakers. As for (4) and (6), they are discussed in May (1985, pp.68).

\(^3\) Reinhart (1983) and Lasnik (1976) reach the same generalization. However, the structural condition they assume for variable binding is surface c-command, rather than LF c-command.

\(^4\) (1) is a variation of the example cited in Darlymple, Shieber, and Pereira (1991) and attributed to Wescoat (1989). (2) is from Hardt (1992).
structure, and the mismatch between variable binding and sloppy identity is expected by Fiengo and May.

Darlymple, Shieber, and Pereira (1991), on the other hand, departs from the tradition by rejecting the ambiguity in the antecedent VP altogether and argue that the strict/sloppy ambiguity is due to two distinct ways of recovering the missing information in ellipsis from the unambiguous source. In this recovering operation, called Higher-order Unification, syntactic islands are irrelevant, and the availability of the sloppy readings in (7) and (8) are expected.

Another potential explanation is found in Rooth (1994), who conjectures that QR is not uniformly clause-bound. In his discussion of nested focus phenomena, Rooth suggests that a focused NP may move out of an island at LF. Although Rooth does not have our examples in mind, his suggestion could be incorporated here. It seems true enough that the antecedent NPs in (1) and (2) are contrastively focused, and if Rooth is correct, they move out of syntactic islands and bind the pronouns.

This paper provides an alternative account which preserves the uniformity of QR and employs a mechanism motivated independently of (7)-(10). In particular, I will assimilate the sloppy pronouns in (7) and (8) to pronouns anaphoric to indefinite noun phrases.

2. Indefinites and VP Ellipsis

First of all, let us take a look at the general properties of indefinites and the way they behave in VP ellipsis contexts. This apparent detour we are about to make has good reasons, as we will see. As anyone who is minimally familiar with the literature on indefinites knows, the structural restrictions on variable binding, such as syntactic islands, are not respected in the anaphoric relation between a pronoun and an indefinite antecedent, which makes a clear contrast with other purely quantifying expressions. In this sense, indefinites are a lot like referring expressions.

Secondly, when an elided VP contains a pronoun anaphoric to an indefinite, its interpretation is the sloppy reading. (I exclude wide scope indefinites or specific indefinites from this generalization.) For example, (11) and (12) are counterparts of (7) and (8), in which the proper names are replaced by indefinites, and the result is the sloppy reading for both.

(11) Every police officer who arrested a murderer insulted him, and every police officer who arrested a burglar didn't [e], too.

(12) If a student in linguistics has troubles at school, I will help him. But if a student in physics has troubles, I doubt I will [e].

Despite their similarities, indefinites and referring expressions do differ in certain respects. For example, backward pronounization is not possible for indefinites, unlike referring expressions (cf. Heim 1982). The difference is exemplified by (13) and (14).

(13) Every teacher who likes him gave John an A.

(14) Every teacher who likes him gave a student an A

However, when a backward pronoun is contained in VP ellipsis, it does not have the sloppy reading.

A similar paradigm is found with psyche predicates as well. Consider (16) and (17).

(16) Every rumor about a farmer upsets him.

(17) The rumor about John upset him, and the rumor about Bill did [e], too.

Native English speakers agree that it is very hard to get the donkey anaphora reading for the pronoun him in (16), and that (17) does not have the sloppy reading. Psyche predicates are notorious for their very peculiar binding properties, which may be responsible for (16) and (17). This paper is not the place to discuss why (14)-(17) do not have the intended reading, and the important generalization for our purpose is that, when the sloppy reading is not available for an elided pronoun, the same structural configuration blocks the anaphoric association between an indefinite and a pronoun.

Finally, there is an interesting interaction between an indefinite and a referring expression. Consider (18) and (19), in which two people are talking about the gala concert that took place last night.

(18) A: Last night, everyone who escorted a soprano kissed her.

B: You are exaggerating. The one who escorted Kiri te Kanawa didn't [e].

(19) A: Last night, the man who escorted Kiri te Kanawa last night kissed her.
B: A big deal. Almost everyone who escorted a soprano did [e].

Let us assume for a moment that a pronoun which is anaphoric to a referring expression is inside the scope of its antecedent is unambiguously a referential pronoun. In (18), the antecedent VP contains a donkey pronoun, but in B's utterance, the donkey pronoun apparently turns into a referential pronoun which refers to Kiri te Kauwaa. (19) is the mirror image of (18): the referential pronoun in the antecedent VP can be understood to be a donkey pronoun in B's utterance. In short, (18) and (19) show that a donkey pronoun and a referential pronoun are not discriminated in VP ellipsis contexts.

In this section, I have shown that a mysterious pronoun which yields the sloppy reading outside the scope of its antecedent shares many properties with a pronoun anaphoric to an indefinite. The data here suggest that these two types of pronouns are not so different after all. In this paper, I go a little further and argue that they are indeed the same. In the following section, I will first examine how an elided pronoun should be interpreted when it is anaphoric to an indefinite, and later, the analysis will be extended to the examples we started our discussion with.

3. E-type Pronouns in VP Ellipsis

3.1. Indefinites and E-type Pronouns

In this paper, I assume that a missing VP is fully represented at LF, and whether it is achieved by LF reconstruction/copying (cf. Fiengo & May 1994) or PF deletion (cf. Fox 1994) is largely immaterial in our discussion. I also assume that a donkey pronoun is analyzed as an E-type pronoun, adopting a pre-final version of Heim (1990), which is more or less the final version of von Fintel (1994). They argue that (i) adverbial quantification is over situations in the sense of Situation Semantics, especially the version developed in Berman (1987) and Kratzer (1989), (ii) indefinites are existential quantifiers after all, and that (iii) an E-type pronoun is a partial function from situations to individuals, and this function is contextually determined, which is reminiscent of Cooper's (1979) treatment. One more important additional assumption is that a quantifier quantifies over minimal situations. As Heim herself noticed in her 1982 dissertation, the E-type pronoun analysis brings about the undesirable uniqueness preposition associated with definite descriptions. The problem can be avoided by assuming the existence of minimal situations, as defined in (20).

(20) \[\min S = \{ s \in S : \neg \exists s' \in S \ [s' \subseteq s \land s' \neq s] \} \] where \(s \) is a partial ordering on \(S \).

For example, a sentence, a dog bit a man, is true in a situation where there were some spectators of the biting event, but these individuals are not included in the minimal situation, in which there are only one dog and one man and the biting relation holds between them. With the quantification over minimal situations, Heim proposes (21) and (22) for adverbial quantification and determiner quantification, respectively.

(21) \[\{ [\text{always}_{s_1} \ \text{if} \ \alpha \ \text{at} \beta] \} = \text{True} \text{ iff } \min \{ s_1 : \alpha \ [\text{in} \ \text{true} = \text{True} \} \subseteq \{ s_1 : \exists s_2 \subseteq s_1 \land \beta \ [\text{in} \ \text{true} = \text{True} \} \} \]

(22) \[\{ [\text{every}_{s_1} \ \alpha \ \text{at} \beta] \} = \text{True} \text{ iff } \{ s_1 : \alpha \ [\text{in} \ \text{true} = \text{True} \} \subseteq \{ s_1 : \exists s_2 \subseteq s_1 \land \beta \ [\text{in} \ \text{true} = \text{True} \} \} \}

For example, (23), a case of adverbial quantification, has the LF representation (24a), where \(f_2 \) is a contextually determined function from situations to individuals and is interpreted as the function which assigns to each situation in its domain the unique man from Athens in that situation. The informal paraphrase of its truth condition is shown in (24b). I assume that there is a hidden universal quantifier in the conditional.

(23) If a man is from Athens, he likes ouzo.

(24) a. always \[a_1 \text{ man}(x_1)(x)(x) \text{ from Athens}(x_1)(x) \] b. \[[\text{likes-ouzo}(x_1)(x)](x_1)(x) \]
b. \([23]\) = True iff for each minimal situation \(s_1\) in which there is one man and he is from Athens, there is another situation \(s_2\) such that \(s_1 \leq s_2\) and the unique man in \(s_2\) likes ouzo in \(s_2\).

Similarly, \((25)\), as an example of determiner quantification, has the LF shown in \((26a)\) and the truth condition \((26b)\). In \((26a)\), \(f_s\) is the function which assigns the unique gun owned in a situation.

\[
(25) \text{ Every man who owned a gun surrendered it (to the police).}
\]

\[
(26) \begin{align*}
&\text{a. }\text{every}_{x,t} \left[\left[\text{man} \left(s_1 \right) \left(x \right) \right] \left[a, \text{gun} \left(s_1 \right) \left(y \right) \left[\text{owned} \left(s_1 \right) \left(y \right) \left(x \right) \right] \right] \\
&\text{\hspace{2cm}}\times \left[\text{surrendered} \left(s_2 \right) \left(f_s \left(s_1 \right) \right) \left(y \right) \right]
\end{align*}
\]

\[
\text{b. }\text{\([25]\)} = \text{True iff all entities each of whom was a man and owned a gun in a minimal situation \(s_1\) are also among those who, in \(s_2\): \(s_1 \leq s_2\), surrendered to the police the unique gun each of them owned in \(s_2\).
\]

3.2. Donkey Pronouns in VP Ellipsis

Now, let us go back to the VP ellipsis cases involving a pronoun with the indefinite antecedent. The first conjunct of \((11)\) has the following form at LF.

\[
(11) \text{ Every police officer who arrested a murderer insulted him, and every police officer who arrested a burglar did, too.}
\]

\[
(27) \text{ every}_{x,t} \left[\left[\text{policeman} \left(s_1 \right) \left(x \right) \right] \left[a, \text{murderer} \left(s_1 \right) \left(y \right) \left[\text{arrested} \left(s_1 \right) \left(y \right) \left(x \right) \right] \right] \\
\text{\hspace{2cm}}\times \left[\text{insulted} \left(s_2 \right) \left(f_s \left(s_1 \right) \right) \left(y \right) \right]
\]

In \((27)\), \(f_s\) is the function which to each situation in its domain assigns the unique murderer who was arrested in that situation. Our next task is to obtain the correct interpretation of the second conjunct which contains an elided VP. First of all, we need to fully represent the missing VP at LF. Recall our assumption that the value of the function variable is contextually determined. It is commonly assumed that the strict reading for a pronoun in VP ellipsis is due to the "rigid" reference of the pronoun. Such a pronoun, commonly called a coreferent pronoun, is a free variable the value of which is contextually determined. Thus, it seems reasonable to analogize the indexing of the function variable to that of a coreferent pronoun, and let us assume that the index on the function variable in the elided VP is the same as in the antecedent VP. That would give \((28)\) for the LF of the

\[
(28) \text{ true iff for each minimal situation \(s_1\) in which there is one man and he is from Athens, there is another situation \(s_2\) such that \(s_1 \leq s_2\) and the unique man in \(s_2\) likes ouzo in \(s_2\).
\]

Similarly, \((25)\), as an example of determiner quantification, has the LF shown in \((26a)\) and the truth condition \((26b)\). In \((26a)\), \(f_s\) is the function which assigns the unique gun owned in a situation.

\[
(25) \text{ Every man who owned a gun surrendered it (to the police).}
\]

\[
(26) \begin{align*}
&\text{a. }\text{every}_{x,t} \left[\left[\text{man} \left(s_1 \right) \left(x \right) \right] \left[a, \text{gun} \left(s_1 \right) \left(y \right) \left[\text{owned} \left(s_1 \right) \left(y \right) \left(x \right) \right] \right] \\
&\text{\hspace{2cm}}\times \left[\text{surrendered} \left(s_2 \right) \left(f_s \left(s_1 \right) \right) \left(y \right) \right]
\end{align*}
\]

\[
\text{b. }\text{\([25]\)} = \text{True iff all entities each of whom was a man and owned a gun in a minimal situation \(s_1\) are also among those who, in \(s_2\): \(s_1 \leq s_2\), surrendered to the police the unique gun each of them owned in \(s_2\).
\]

3.2. Donkey Pronouns in VP Ellipsis

Now, let us go back to the VP ellipsis cases involving a pronoun with the indefinite antecedent. The first conjunct of \((11)\) has the following form at LF.

\[
(11) \text{ Every police officer who arrested a murderer insulted him, and every police officer who arrested a burglar did, too.}
\]

\[
(27) \text{ every}_{x,t} \left[\left[\text{policeman} \left(s_1 \right) \left(x \right) \right] \left[a, \text{murderer} \left(s_1 \right) \left(y \right) \left[\text{arrested} \left(s_1 \right) \left(y \right) \left(x \right) \right] \right] \\
\text{\hspace{2cm}}\times \left[\text{insulted} \left(s_2 \right) \left(f_s \left(s_1 \right) \right) \left(y \right) \right]
\]

In \((27)\), \(f_s\) is the function which to each situation in its domain assigns the unique murderer who was arrested in that situation. Our next task is to obtain the correct interpretation of the second conjunct which contains an elided VP. First of all, we need to fully represent the missing VP at LF. Recall our assumption that the value of the function variable is contextually determined. It is commonly assumed that the strict reading for a pronoun in VP ellipsis is due to the "rigid" reference of the pronoun. Such a pronoun, commonly called a coreferent pronoun, is a free variable the value of which is contextually determined. Thus, it seems reasonable to analogize the indexing of the function variable to that of a coreferent pronoun, and let us assume that the index on the function variable in the elided VP is the same as in the antecedent VP. That would give \((28)\) for the LF of the
second conjunct.

(28) every \(x, s_1 \) \([\text{policeman}(s_1)(x) \mid \text{arrested}(s_1)(y)(s)] \mid \text{insulted}(s_1)(f_4(s_1))(x)]\)

However, (28) does not give the right interpretation for the pronoun. The function \(f_4\) is supposed to pick the unique murderer in each minimal situation, but no minimal situations for the second conjunct contain a murderer: only a policeman and a burglar. Thus, the pronoun would simply fail to be defined.

Nonetheless, we need not confront this complication once we make a slight change to the interpretation of the function variable \(f_4\). The source of our trouble is that the descriptive content of the indefinite antecedent differs in the two conjuncts: a murderer in the first and a burglar in the second. Thus, the problem will be avoided by simply getting rid of the descriptive content from the definition of \(f_4\). In other words, \(f_4\) is now interpreted as a partial function which assigns to each situation in its domain the unique individual who was arrested in that situation. This underspecification of the function variable turns out to be quite harmless because of the definition of minimal situations. In the first conjunct, a minimal situation contains only one policeman and one murderer, and the former arrested the latter, and the slightly underspecified \(f_4\) still succeeds in picking up the unique arrestee who happens to be a murderer in that situation. In the second conjunct, the same function variable again assigns the unique arrestee to each situation, but this time the arrestee happens to be a burglar. Thus, we can paraphrase (11) very informally as (11'), ignoring situations.

(11') every policeman who arrested a murderer insulted the unique individual (= the unique murderer) he arrested, and every policeman who arrested a burglar insulted the unique individual (= the unique burglar) he arrested, too.

(11') is indeed the interpretation we were after.

3.3. Revisiting the Problematic Cases

I would like to suggest that it is possible to duplicate our success in the puzzling sloppy reading in (7) and (8) by merely extending the same analysis to a pronoun whose antecedent is a referring expression. In doing so, I have to argue against the standard view (and in particular, Heim's 1990 claim) that the E-type strategy can be employed only for a pronoun anaphoric to an indefinite. Let us go back to our puzzling sloppy identity examples.

(7) The policeman who arrested John insulted him, and the one who arrested Bill did, too.

(8) If Harry has trouble at school, I will help him. But if John has trouble, I doubt I will.

As they stand, these examples cause some complications that are not our main concern. In (7), the subject NPs are headed by definite determiners, and I am not certain how they should be treated. (8) contains some extra material, such as the modal, will, and the propositional attitude verb, doubt. For simplicity, I change (7) and (8) to (7') and (8'). This simplification may sacrifice the naturalness of the original examples but does not affect the main point of our discussion: the antecedent of the pronoun remains inside a syntactic island in both cases.

(7') Every policeman Bill asked for help ignored him, and every policeman John asked for help did, too.

(8') If Harry has trouble at school, I always help him. But if John has trouble at school, I never do.

In (7') and (8'), the pronoun, him, is interpreted as an E-type pronoun. The LF representations of the first conjuncts (7) and (8') are shown in (29) and (30), respectively.

(29) every \(x, s_1 \) \(\text{[policeman}(s_1)(x) \mid \text{asked-for-help}(s_1)(x)(\text{bill})]\) \(\text{[ignored}(s_1)(f_4(s_1))(x)]\)

(30) always \(s_2 \) \(\text{[has-trouble-at-school}(s_2)(\text{harry})]\) \(\text{[help}(s_2)(f_4(s_2))(\text{bill})]\)

In (29), \(f_4\) is the function which assigns to each situation of its domain the

6 Because of limitation of space, I cannot fully defend this claim. In Tomioka (1994), I argued that allowing the E-type strategy for referring expressions is harmless (if redundant) in most cases. Heim (1990) cites so-called paycheck pronouns in her argument against using E-type pronouns for definites, but she informed me (via personal communication) that her intent was to block the syntactic copying of descriptive content for paycheck pronouns. See Tomioka (1994, section 5.2.) for details.
unique individual who asked x for help in that situation. That means, in reality, that it is indistinguishable from the constant function which assigns Bill to every situation, since there is no one else in a minimal situation who asked a policeman for help. Similarly, \(f_2 \) in (30) picks up the unique individual having trouble at school in each situation, who happens to be Harry in every situation.

In (31), time, the same function variable assigns John to every situation. The same is said for (32). The result obtained by our analysis is truth-conditionally identical to the sloppy reading that would result from the direct binding between the antecedent and the pronoun.

4. An Easy Excursion to Association with Focus

The analysis presented above can be easily extended to a similar kind of ambiguity in a different context. Rooth (1985) discusses the sloppy/strict ambiguity in association with focus cases, the observation originally made by Geach (1962). Consider (33).

(33) I only told [Sue,] that she is a genius.

(33) is two-way-ambiguous: Either I told no one other than Sue that Sue is a genius, or I told no one other than Sue that person is a genius. Rooth relates the first reading to the coreferent interpretation of the pronoun and the second reading to the bound-variable interpretation.

Before we discuss (33) further, a quick introduction to a theory of focus may be useful. Under the framework of Alternative Semantics of Focus, which was first proposed by Rooth (1985) and later developed by Kratzer (1991) and Rooth (1992), focusing elicits a set of alternatives to the element that is focused. For example, the focus on Meg in (34) evokes a set of alternative individuals to Meg.

(34) Sam only talked to [Meg].

At the level of the VP, the alternative set is a set of properties of the form, 'talked to x'.

Thus, let us turn back to the ambiguous example (33). The focus on Sue evokes a set of alternative individuals to Sue. At the VP level to which only is attached, the alternative set is a set of properties of the form, 'told x that Sue is a genius' or 'told x that x is a genius'. The former corresponds to the referential use of the pronoun, and the latter to the bound variable interpretation. A little more formally, the two possible alternative sets are shown in (35).

(35) a. \(\{ P : \forall x \left[P = \lambda y. \text{told}(\text{a genius}(y)) \right] \} \) (the strict reading)

b. \(\{ P : \forall x \left[P = \lambda y. \text{told}(\lambda x. (\text{has-trouble-at-school}(x) \rightarrow \text{help}(x)(y))) \right] \} \) (the sloppy reading)

In (35a), the referential pronoun is represented as an unbound variable the value of which is contextually assigned.

It turns out that the sloppy reading shows up when the pronoun is not c-commanded by its antecedent, as we have observed in VP ellipsis contexts. Consider (36).

(36) I have been accused for not being helpful, but that’s not fair. I only promised that if Sue has trouble at school, I will help her.

I was careful enough not to make empty promises.

The given context forces the second sentence in (36) to have the sloppy reading for the pronoun, her. Therefore, the desired set of alternative properties is something like (37).

(37) \(\{ P : \forall x \left[P = \lambda y. \text{promised}(\lambda z. (\text{has-trouble-at-school}(z) \rightarrow \text{help}(x)(y))) \right] \} = \{ P : \forall x \left[P = \lambda y. \text{promised}(\lambda x. (\text{has-trouble-at-school}(x) \rightarrow \text{help}(x)(y))) \right] \} \)

In (37), we face the same dilemma as before: the QRing of the NP, Sue, must ignore the island constraint to get the intended reading. We can avoid the problem, however, by importing the analysis for VP ellipsis to this case. First, we analyze the pronoun, her, as an E-type pronoun, which is the function which assigns the unique individual having trouble at school to each situation. With this analysis, the alternative set now looks like (38).

(38) \(\{ P : \exists x \left[P = \lambda y. \text{promised}(\lambda z. (\text{has-trouble-at-school}(z) \rightarrow \text{help}(x)(y))) \right] \} = \{ P : \exists x \left[P = \lambda y. \text{promised}(\lambda x. (\text{has-trouble-at-school}(x) \rightarrow \text{help}(x)(y))) \right] \} \)

\(\text{7 The acceptability of (36) under the sloppy reading varies among native speakers. For this reading to arise, it is essential not to stress the pronoun.} \)
(38) gives the bound-variable like interpretation for the pronoun: The unique individual having trouble at school varies among the members of the set and is always the alternative individual to Sue in each alternative property. The E-type pronoun analysis of sloppy identity thus proves to be successful in association-with-focus cases, as well as in VP ellipsis contexts.

Once the Alternative Semantics of focus is adopted for focusing effects in general, the analysis presented in this paper gives the most straightforward account for the sloppy reading in (36), compared to the other competitors. Although Darlymple, Shieber, and Pereira (1991) mentions association with focus as a place where a possible extension of their analysis could be made, it is still unknown at best whether the higher-order unification theory could or should apply to the computation of alternatives. Fiengo and May's (1994) Dependency theory-based account also faces some uncertainties. In their theory, dependent indices are responsible for the sloppy reading via i-copying, but i-copying is an LF operation utilizing structural descriptions. The computation of alternatives, on the other hand, is assumed to be a post-LF operation in the semantic component, and I consider it a rather difficult task to reconcile the difference.

5. Conclusion

In this paper, I have provided an account for the puzzling mismatch between variable binding and sloppy identity in VP ellipsis and association-with-focus contexts, where the pronoun is not c-commanded by its antecedent. The shortcomings of the traditional account are overcome by extending the semantics of indefinites to those cases. The current analysis correctly anticipates not only the mismatch in licensing variable binding and sloppy readings but also the striking similarities between a pronoun with the sloppy reading and one with an indefinite antecedent.

References

Heim, Irene and Angelika Kratzer. 1992. Introduction to semantics, ms. MIT and University of Massachusetts. (To be published by Blackwell.)

This paper bears on the content of UG (Universal Grammar), and in particular on the content of UG with respect to lexical categories such as prepositions, verbs, adjectives and nouns. It will be argued that semantically vacuous lexical items can provide information as to the inherent properties of lexical categories.

The paper is based on two claims. First, UG specifies canonical forms to represent information. For example, the canonical form to represent the conceptual category PROPERTY is adjectives, and the canonical form to represent the conceptual category RELATION is prepositions.

(1) PROPERTY: A (x)
RELATION: P (x,y)

The problem is that it is difficult to make the distinction between the properties of lexical categories such as adjectives or prepositions and the properties of specific lexical items. For example, if one considers a
Contents

Preface ix

The Transitivity of Verbs of Saying Revisited 1
MENGISTU AMBERBER

The Licensing of Adjectival Modification 17
ANTONIA ANDROUTSOPOULOU

Questions in Discourse 33
VIRGINIA BRENNAN

Constraint Domains in Kashaya 47
EUGENIE BUCKLEY

Is It (Only Rock'n Roll), Or Just Like It? 63
DANIEL BÜRING & KATHARINA HARTMANN

Economy and The Scope of Amount Phrases 79
DIANA CRESTI

Constraint Violability in Western Apache 95
AMY V. FOUNTAIN

Restraining Functional Projections: Auxiliaries and Particlples 111
ELLY VAN GELDEREN

The Syntax and Interpretation of Dropped Categories in Child Language: A Unified Account 123
TEUN HOEKSTRA & NINA HYAMS

Conditions on the Event-related Reading 137
MARTIN HONCOOP & JENNY DOELIES

Determiners, Context Sets, and Focus 155
HELEN DE HOOP & JAUME SOLÀ

Integral Predication 169
NORBERT HORNSTEIN, SARA THOMAS ROSEN & JUAN URIAGEREKA

To Have and Have not: on the Deconstruction Approach 185
SABINE IATRIDOU

A Solution to the Subcomparative Paradox 203
ROUMYANA IVVORSKI
CONTENTS

Place Assimilation as the Result of Conflicting Perceptual and Articulatory Constraints 221
JONGHO JUN

On the Left Periphery of German Subordinate Clauses 239
ANDREAS KATHOL & CARL FOLLARD

Strict Cyclicity, Linear Ordering, and Derivational C-Command 255
RURIKO KAWASHIMA & HISATROU KITAMURA

Predication in Tough-constructions 271
BOOMEK KIM

Parasitic Gaps, Multiple Questions, and VP Ellipsis 287
SOOWON KIM & JAMES LYLE

The Parametric Variation of French and English Negation 303
JONG-BOK KIM & IVAN A. SAG

The Syntax and Semantics of Indefinite+Buti Phrases in Hindi 319
UPDAL LAHIRI

Focus Relations and Weak Islands 335
ANDRÉ MEININGER

NP-Internal Modifiers and Temporal Upper Limit Effects 351
RENATE MUSAN

Theme Extraction in Bantu Applicatives 367
MASANORI NAKAMURA

PP-Complements in Dutch 383
AD NIEBLEMAN

Correspondence and Identity Constraints in Two-level Optimality Theory 399
CEMIL ORHAN ORGUN

Consequences of a Predication-Based Analysis of Semantic Partition 415
ORIN PERCUS

Hierarchical Structure in a Non-Configurational Language: Asymmetries in Swampy Cree 431
KEVIN RUSSELL & CHARLOTTE REINHOLTZ

Evidence for Case-Related Functional Projections in Early German 447
CARSON T. SCHÜTZE

Scope Interpretation without Rigidity Condition 463
KEUN-WON SOHN

A Constraint-Based Theory of Reduplication Patterns 477
PHILIP SPÉLESI

Predication and Functional Heads 493
PIETER SVENONIUS

VP-Internal Object Shift 509
YUJITAKA NO

Agreement and Extraction Out of DPs 525
CHRISTINE THUILLIER AND DANIEL VALON

On the Mismatch between Variable Binding and Sloppy Identity 541
SAKOSHI TOMIOKA

Empty Prepositions and UG 557
MIRIELLE TREMBLAY

Levels of Representation and Negative Polarity Item Licensing 571
MYRIAM URIBE-ETXEBARRIA

Split Ergativity and NP-Movement 587
JAMES LYLE

Index 603