A Major Object Analysis of the So-called Raising-to-Object Construction in Japanese (and Korean)

Hajime Hoji
USC

Abstract
Empirically, this talk is concerned with examples such as (1).

(1) John-wa Mary-o Itariazin da to omotteita.
John-TOP Mary-ACC Italian be that thought

(2) a. John believed about Mary that she was Italian.
 b. John believed Mary to be Italian.

I have the following three goals in mind.

(3) a. To argue for and defend a Major Object analysis of the so-called Raising-to-Object (henceforth simply RtoO) Construction in Japanese (and Korean), according to which NP-o that corresponds to Mary-o in (1) is 'base-generated' in the matrix clause and is not part of the embedded CP at any stage of derivation, and (1) corresponds more closely to (2a) than to (2b), in terms of the relevant formal properties.
 b. To give a brief illustration of how we/I have been trying to conduct syntactic experiments, and what 'criteria' can be profitably placed in determining when a hypothesis is falsified and when it is corroborated (the latter not in the Popperian sense).
 c. To explore (further) consequences of the proposed analysis alluded to in (3a).

I have concrete things/results to say/report about (3a) and (3b), and feedback from the workshop participants would be much appreciated. As to (3c), I have specific issues I have been concerned with, but without clear answers yet, and I am hoping to be able to make some progress in regard to those issues through the discussion at the workshop.

I will try to do (3a) by examining (i) what negative predictions the proposed analysis makes, in conjunction with an independent hypothesis, and (ii) how the predictions are borne out. An answer to (ii) brings us to (3b), whose main points have to do with when a hypothesis is to be considered as being falsified and when it is to be considered as being corroborated (not in Popper's sense). I wish to adopt the following 'criterion' for evaluating our hypotheses. A hypothesis is falsified if examples that are predicted to be unacceptable (under a specified interpretation) are judged acceptable (under the specified interpretation), and it is corroborated if it is not falsified and a sufficiently compelling degree of contrast is detected between (i) the examples that are predicted to be unacceptable and (ii) those that are not so predicted by virtue of being minimally different from the former in regard to the grammatical
or formal factor that is hypothesized to be responsible for the status of the former. A concrete way to execute this idea will be introduced, along with a way to conduct relevant syntactic experiments in which judgments are solicited from informants.

The experiments whose results I will report in this presentation include those on (4).

(4) a. the distribution of negation-sensitive elements (often referred to in the literature as "negative polarity items") in Japanese
b. the effects of Proper Binding Condition in the 'scrambling construction' and RtoO

The result on the experiment on (4a) corroborates the Major Object hypothesis, and that on the experiment on (4b) falsifies the hypothesis in (5).

(5) RtoO necessarily involves syntactic movement of the relevant o-marked NP in RtoO and its trace is subject to the Proper Binding Condition.

In addition to providing support for the Major Object analysis of the so-called RtoO in Japanese (and arguably in Korean), I suggest in this talk that it is necessary for us to bind ourselves by the criteria of the sort alluded to above in regard to falsification and corroboration, if we want to be taken seriously by linguists outside generative grammar, and perhaps more importantly by researchers in the neighboring disciplines and beyond, in regard to the claim that we are engaged in an empirical science with progress in mind.

1. The so-called raising-to-object construction in Japanese

(6) John-wa Mary-o Itariazin da to omotteita.
John-TOP Mary-ACC Italian be that thought
"John believed about Mary that she was Italian."

(7) Raising Analysis:
The o-marked NP in (6) (henceforth Mob) is 'base-generated' in the embedded clause and gets raised to a position in the matrix clause. (Kuno's (1976) proposal is of this type.)

(8) ECM Analysis:
Mob is 'base-generated' in the embedded clause and stays inside the embedded clause.

Several (or perhaps more than several) proposals have appeared since around 1990, discussing (6) and its Korean counterpart. Among the analyses I know of are (9) and (10).

(9) The movement-of-the-major-subject analysis:
Mob is 'base-generated' as the major subject in the embedded clause and gets raised to a position in the matrix clause.
(10) The combination of (7) and (8):
The option in (7) and the one in (8) are both allowed.

(James) Yoon 2004 argues for (9) and Hiraiwa 2002 proposes (10). The latter claims that Mob always moves from 'its theta position' to a/the Spec of the embedded CP, and what is optional is the subsequent movement of Mob out of the embedded CP.

J.-E. Yoon (1989) argued for a 'major-subject' analysis but she combined it with the ECM approach. So, her analysis does not have the raising part of Yoon 2004.1 Hong 1990, written in the LFG framework, seems to propose something quite close to what is proposed in Hoji 1991, and further defended in Takano 2003, i.e., the hypothesis/analysis that Mob is 'base-generated' in the matrix clause and is not part of the embedded CP at any stage of derivation.2

2. CFJs, falsification, and corroboration

A brief illustration of (11) will be provided here.

(11) a. the structure of a CFJ (Call For Judgments)
 b. when a hypothesis is regarded as being falsified
 c. when a hypothesis is regarded as being corroborated

(12) The content of a CFJ
 a. A set of example sentences are placed on a web page.
 b. Informants are asked to judge each sentence by choosing one of the five circles placed under (i).

1 Parallelism between Mob and a major subject is considered in Hoji 1991, and it is noted there that the parallelism is not complete, as indicated by the contrast in (i).

(i) (=Hoji 1991: (43))
 a. IBM-wa [soko-no atarasii konpyuutaa-no himitu]-o asita-no kisyakaiken-de [CP Hitati-ga (spai-o tukatte) {pro/sore,-o} nusunda to] happyoo suru tumorida 'IBM intends to announce about [the secret of their new computer] at tomorrow's press interview that Hitachi stole it, (by using spies).'
 b. *[soko-no atarasii konpyuutaa-no himitu]-ga [CP Hitati-ga (spai-o tukatte) {pro/sore,-o} nusunda/nusumidasita 'It is [the secret of their new computer], that Hitachi stole (by using spies).'

It is further suggested there that Mob is closer to the 'aboutness' topic than to the major subject, on the basis of the parallelism between (i-a) and (ii).

(ii) (=Hoji 1991: (44))
 a. [soko-no atarasii konpyuutaa-no himitu]-wa [CP Hitati-ga (spai-o tukatte) {pro/sore,-o} nusunda/nusumidasita 'As for [the secret of their new computer], Hitachi stole it, (by using spies).'

2 Saito (1983) hints at the proposal being pursued here. According to Hoji 1991, Kitagawa (1985) also suggests or argues for the possibility of the proposed structure (along with the ECM-type structure for it).

3 No time limit is placed on the task. The informants can judge some of the examples on a CFJ during a given visit to the web page, and can come back to the page to judge other
(i) Bad $\langle\ldots\rangle$ Good
c. The five choices will be computed as in (ii), "−2" corresponding to
"Bad" and "+2" to "Good" but the informants do not know what
numeric values will be assigned to each of the five circles.
(ii) −2, −1, 0, +1, +2

In regard to when a given hypothesis is to be considered falsified, the
basic idea is that the hypothesis should be considered falsified if the examples
that are predicted to be unacceptable are judged acceptable. For the ease of
exposition, let us refer to an example in a CFJ that is predicted to be impossible
(under a specified interpretation) as Eg^*. The crucial assumption here is that if
an Eg^* is predicted to be impossible due to a grammatical reason, no lexical or
pragmatic adjustments should be able to save it; hence, the native speakers
should find the Eg^* to be unacceptable, as long as it is constructed with care
(i.e., controlling the unwanted factors that would contribute to noise) and as
long as the informants are following the instructions correctly. The predicted
value on such an Eg^* should therefore be "−2," if everything were to go ideally.
Since we cannot expect everything to go ideally, however, we must decide on
some numeric value F such that the hypothesis in question is to be regarded
falsified if the average score on the Eg^* in a CFJ is greater than F. While the
selection of the exact numeric value of F is bound to be arbitrary; let us, for the
time being, adopt (13).

(13) Falsification
A hypothesis is falsified iff the average score for the example that is
predicted to be unacceptable, i.e., the average score for Eg^*, is
greater than −1.0.

That a given hypothesis is not falsified does not necessarily make it
plausible. After all, an Eg^* can be felt to be unacceptable for reasons that are
independent of what is hypothesized to be responsible for its unacceptability.
We thus need to make sure that an example that forms a minimal pair with an
Eg^* is indeed judged to be fairly acceptable. Let us refer to such an example
as Eg, in contrast to Eg^*.

For ease of exposition and intelligibility of the presentation, I state in (14)
what is meant by Eg^* and Eg.

(14) a. Eg^* (which will be read as "star Eg" or "star example"): an example
in a CFJ that is predicted to be impossible (under a specified
interpretation)
b. Eg_1 (which will be read as simply "Eg" or "supporting example"): an
example that forms a minimal pair with an Eg^*_1

We may use an index to specify which Eg^* a given Eg forms a minimal pair
with, as in Eg_1 and Eg^*_1. Just as we wish the average score on an Eg^* to be
as close to "−2" as possible, so we would like the one on an Eg to be as close to

examples later. They are also allowed to change their judgments later.
"+2" as possible.

As noted, an Eg^* is predicted to be unacceptable by the hypothesis, in the conjunction with another hypothesis (or a set of hypotheses). Hence, a single occurrence of an Eg^* that is judged to be not so unacceptable can, in principle, falsify the hypothesis in question. By contrast, an Eg is not predicted to be acceptable, it is only not predicted to be unacceptable. The score on an Eg would therefore never result in the falsification of a hypothesis in question. It could, however, enhance the plausibility of the hypothesis. Let us thus adopt (15).

(15) Corroboration

A hypothesis is corroborated iff the difference between the average score on Eg^*_n and that on Eg_n (henceforth $Dif-Eg_n$) is greater than 3.

As in the case of (13), the numerical value specified in (15) is somewhat arbitrary, but not totally so. Suppose that $Dif-Eg_n$ is greater than 3. Since the scale is between -2 and $+2$, the average score on Eg^*_n cannot in that case be greater than -1. Hence, when a hypothesis is corroborated, it is never falsified.

3. The Kataoka hypotheses

(16) and (17) are taken from Kataoka to appear: (1) & (2).

(16) a. Taro-wa manga-sika yoma-nai. /*yomu.
 Taro-TOP comics-all:but read-Neg /*read
 'Taro does not read any kind of book but comics.'

 b. Taro-sika manga-o yoma-nai /* yomu (koto)
 Taro-all:but comics-ACC read-Neg /*read (Comp)
 'Nobody but Taro reads comics.'

(17) a. Saikin rokuna-sakka-ga syoo-o {tora-nai /*toru}.
 recently good-writer-NOM award-ACC get-Neg /*get
 'Recently, no good writers have got an award.'

 b. Taro-wa itumo rokuna-koto-o {si-nai /*suru}.
 Taro-TOP always good-thing-ACC do-Neg /*do
 'Taro always does damn things.'

Kataoka 2004 and to appear propose (18) and (19), the latter of which has been reformulated here.

(18) (Kataoka to appear: (4))

Rokuna-N must be c-commanded by Neg at LF.

(19) (My reformulation of Kataoka to appear: (23))

*Kataoka states this in terms of Spec-head relation, as in (i).

(i) (Kataoka to appear: (23))

XP-sika must be in NegP-Spec at LF.
At LF \(XP\text{-}sika\) must be in a mutual c-command relation with a projection of Neg, as an instance of \textit{subject-predicate relation}.

4. Predictions and results of experiments\(^5\)

4.1. \textit{Rokuna-N} and Neg

Given (18), and given the assumptions that downward movement is disallowed and Neg does not raise at LF crossing a clause boundary, we make the prediction in (20).

(20) The chart and the predicted values under the Kataoka hypothesis:

<table>
<thead>
<tr>
<th></th>
<th>\textit{rokuna-N} in the matrix</th>
<th>\textit{rokuna-N} in the embedded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neg in the matrix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neg in the embedded</td>
<td></td>
<td>-2</td>
</tr>
</tbody>
</table>

4.2. \textit{Rokuna-N} as a Major Object

The Major Object hypothesis, combined with (18), and the assumptions just noted, give rise to the prediction recorded in (21).

(21) The chart and the predicted values under the Major Object hypothesis, together with the Kataoka hypothesis:

<table>
<thead>
<tr>
<th></th>
<th>\textit{rokuna-N-o} as Mob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neg in the matrix</td>
<td></td>
</tr>
<tr>
<td>Neg in the embedded</td>
<td>-2</td>
</tr>
</tbody>
</table>

4.2.1. CFJ-16

(22) CFJ-16: the average scores (29 informants)\(^6\)

<table>
<thead>
<tr>
<th></th>
<th>(1a)</th>
<th>(1b)</th>
<th>(2a)</th>
<th>(2b)</th>
<th>(3a)</th>
<th>(3b)</th>
<th>(3'a)</th>
<th>(3'b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+1.83)</td>
<td>(-1.72)</td>
<td>(+0.81)</td>
<td>(-1.70)</td>
<td>(+1.00)</td>
<td>(-1.74)</td>
<td>(+1.26)</td>
<td>(-1.78)</td>
<td></td>
</tr>
<tr>
<td>(29)</td>
<td>(29)</td>
<td>(26)</td>
<td>(27)</td>
<td>(27)</td>
<td>(27)</td>
<td>(27)</td>
<td>(27)</td>
<td></td>
</tr>
</tbody>
</table>

\(^5\) I tried in Hoji 1991: 2.6 to make the same point as what is to be given in this section, on the basis of the following paradigm, with the gloss and translation newly added here.

(i) John-ga [kurasu-no ko]-o \([cp \text{ pro, hitorimo waruku nai to}]\) omotteita

\text{John-NOM class-GEN students-ACC not:a:single:one bad NEG that thought}

'John thought about the students in the class that none of them was at fault.'

(ii) *John-ga [kurasu-no ko]-o \text{hitorimo ima-wa [cp pro, waruku nakatta to]} omotteiru (koto)

\text{John-NOM class-GEN students-ACC not:a:single:one now-TOP bad}

\text{NEG:past that think}

'John now thinks about none of the students in the class that s/he was not at fault.'

(iii) John-ga [kurasu-no ko]-o \text{hitorimo ima-wa [cp pro, warukatta to]} omotteina (koto)

\text{John-NOM class-GEN students-ACC not:a:single:one now-TOP}

\text{bad-past that think:NEG}

'John now does not think about a single of student in the class that s/he was at fault.'

\(^6\) From here on, example numbers included in a chart refer to the examples in the CFJs, not to the examples given in this handout.
(23) CFJ-16: Adjusted average scores; for each pair in (1), (2), (3) and (3') in CFJ-16, the scores are counted only if the informant has given a score of "+2" on the (a) example (i.e., on Eg).

<table>
<thead>
<tr>
<th>Eg1</th>
<th>Eg*1</th>
<th>Eg2</th>
<th>Eg*2</th>
<th>Eg3</th>
<th>Eg*3</th>
<th>Eg4</th>
<th>Eg*4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(1a)</th>
<th>(1b)</th>
<th>(2a)</th>
<th>(2b)</th>
<th>(3a)</th>
<th>(3b)</th>
<th>(3'a)</th>
<th>(3'b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+2.00</td>
<td>−1.72</td>
<td>+2.00</td>
<td>−1.90</td>
<td>+2.00</td>
<td>−1.77</td>
<td>+2.00</td>
<td>−1.88</td>
</tr>
</tbody>
</table>

4.2.2. The predicted values and the outcome of CFJ-16

(24) a. (=(20))

The chart and the predicted values under the Kataoka hypothesis:

<table>
<thead>
<tr>
<th>Neg in the matrix</th>
<th>rokuna-N in the matrix</th>
<th>rokuna-N in the embedded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neg in the embedded</td>
<td>−2</td>
<td></td>
</tr>
</tbody>
</table>

b. (The numbers refer to the example numbers in CFJ-16.)

<table>
<thead>
<tr>
<th>Neg in the matrix</th>
<th>rokuna-N-ga in the matrix</th>
<th>rokuna-N-ga in the embedded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eg: (3a), (3'a)</td>
<td></td>
</tr>
<tr>
<td>Neg in the embedded</td>
<td>Eg*: (3b), (3'b)</td>
<td>Eg: (1a)</td>
</tr>
</tbody>
</table>

(25) The average scores on (3a), (3'a), (3b) and (3'b) in (24b); see (22).

<table>
<thead>
<tr>
<th>Neg in the matrix</th>
<th>rokuna-N-ga in the matrix</th>
<th>rokuna-N-ga in the embedded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eg: +1.00, +1.26</td>
<td></td>
</tr>
<tr>
<td>Neg in the embedded</td>
<td>Eg*: −1.74, −1.78</td>
<td>Eg: +1.83</td>
</tr>
</tbody>
</table>

(26) a. (=(21))

The chart and the predicted values under the Major Object hypothesis, together with the Kataoka hypothesis:

<table>
<thead>
<tr>
<th>Neg in the matrix</th>
<th>rokuna-N-o as Mob</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Neg in the embedded</td>
<td>−2</td>
</tr>
</tbody>
</table>

b. (The numbers refer to the example numbers in CFJ-16.)

<table>
<thead>
<tr>
<th>Neg in the matrix</th>
<th>rokuna-N-o as Mob</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eg: (2a)</td>
</tr>
<tr>
<td>Neg in the embedded</td>
<td>Eg*: (1b), (2b)</td>
</tr>
</tbody>
</table>

(27) The average scores on (2a), (1b), and (2b) in (26b); see (22).

7 The number in the parentheses indicates the number of informants counted.
4.3. *NP-(cm)-sika* and Neg

Given (19), repeated here, and given the assumptions that downward movement is disallowed and Neg does not raise at LF crossing a clause boundary, we make the prediction in (29).

(19) (My reformulation of Kataoka to appear: (23))

At LF *XP-sika* must be in a mutual c-command relation with a projection of Neg, as an instance of *subject-predicate relation*.

(29) The chart and the predicted values under the Kataoka hypothesis in (19):

<table>
<thead>
<tr>
<th>Neg in the matrix</th>
<th>NP-(cm)-sika in the matrix</th>
<th>NP-(cm)-sika in the embedded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>−2</td>
</tr>
</tbody>
</table>

4.4. *NP-o-sika* as a Major Object

The Major Object hypothesis, combined with (19), and the assumptions just noted, give rise to the prediction recorded in (30).

(30) The chart and the predicted values under the Major Object hypothesis, together with the Kataoka hypothesis in (19):

<table>
<thead>
<tr>
<th>Neg in the matrix</th>
<th>NP-o-sika as Mob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neg in the embedded</td>
<td>−2</td>
</tr>
</tbody>
</table>

4.4.1. CJF-40 (16 examples, 20 informants)

(31) CJF-40: the average scores

<table>
<thead>
<tr>
<th></th>
<th>(1a)</th>
<th>(1b)</th>
<th>(1c)</th>
<th>(1d)</th>
<th>(2a)</th>
<th>(2b)</th>
<th>(3a)</th>
<th>(3b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>+1.95</td>
<td>−1.20</td>
<td>+1.90</td>
<td>−1.30</td>
<td>+0.55</td>
<td>+0.55</td>
<td>−1.84</td>
<td>−1.58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(4a)</th>
<th>(4b)</th>
<th>(4c)</th>
<th>(4d)</th>
<th>(2a')</th>
<th>(2b')</th>
<th>(3a')</th>
<th>(3b')</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>+1.89</td>
<td>−1.53</td>
<td>+1.95</td>
<td>−1.32</td>
<td>+1.53</td>
<td>+1.56</td>
<td>−1.37</td>
<td>−1.16</td>
</tr>
</tbody>
</table>

4.4.2. The predicted values and the outcome of CFJ-40

(32) a. (= (29))

The chart and the predicted values under the Kataoka hypothesis in (19):
b. (The numbers refer to the example numbers in CFJ-40.)

<table>
<thead>
<tr>
<th></th>
<th>NP-(cm)-sika in the matrix</th>
<th>NP-(cm)-sika in the embedded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neg in the matrix</td>
<td>Eg: (1a), (4a)</td>
<td>Eg*: (1d), (4d)</td>
</tr>
<tr>
<td>Neg in the embedded</td>
<td>Eg*: (1b), (4b)</td>
<td>Eg: (1c), (4c)</td>
</tr>
</tbody>
</table>

(33) The average scores on (1) and (4) in CFJ-40:

<table>
<thead>
<tr>
<th></th>
<th>NP-(cm)-sika in the matrix</th>
<th>NP-(cm)-sika in the embedded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neg in the matrix</td>
<td>Eg: +1.95, +1.89</td>
<td>Eg*: −1.30, −1.32</td>
</tr>
<tr>
<td>Neg in the embedded</td>
<td>Eg*: −1.20, −1.53</td>
<td>Eg: +1.90, +1.95</td>
</tr>
</tbody>
</table>

(34) a. (=(30))

The chart and the predicted values under the Major Object hypothesis, together with the Kataoka hypothesis in (19)

<table>
<thead>
<tr>
<th></th>
<th>NP-o-sika as Mob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neg in the matrix</td>
<td></td>
</tr>
<tr>
<td>Neg in the embedded</td>
<td>−2</td>
</tr>
</tbody>
</table>

b. (The numbers refer to the example numbers in CFJ-40.)

<table>
<thead>
<tr>
<th></th>
<th>NP-o-sika as Mob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neg in the matrix</td>
<td>Eg: (2a), (2b)</td>
</tr>
<tr>
<td>Neg in the embedded</td>
<td>Eg*: (3a), (3b)</td>
</tr>
</tbody>
</table>

(35) The average scores on (2) and (3) in CFJ-40:

<table>
<thead>
<tr>
<th></th>
<th>NP-o-sika as Mob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neg in the matrix</td>
<td>Eg: +0.55, +0.55</td>
</tr>
<tr>
<td>Neg in the embedded</td>
<td>Eg*: −1.84, −1.58</td>
</tr>
</tbody>
</table>

(36) CFJ-40: The adjusted average scores; for each pair in (2) and (3), the scores are counted only if the informant gave a score of "+1" or "+2" on the (a) example. The number in the parentheses indicates the number of informants counted.

<table>
<thead>
<tr>
<th></th>
<th>NP-o-sika as Mob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neg in the matrix</td>
<td>Eg: +1.38 (13), +1.42 (12)</td>
</tr>
<tr>
<td>Neg in the embedded</td>
<td>Eg*: −2.00 (12), −1.91 (11)</td>
</tr>
</tbody>
</table>

(37) The crucial part of CFJ-40: the average score

<table>
<thead>
<tr>
<th></th>
<th>(2a)</th>
<th>(2b)</th>
<th>(3a)</th>
<th>(3b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eg</td>
<td>+0.55 (20)</td>
<td>+0.55 (20)</td>
<td>−1.84 (19)</td>
<td>−1.58 (19)</td>
</tr>
</tbody>
</table>

KyotoHandout_v_1_4_3.doc 9/24
(38) The crucial part of CFJ-40: Adjusted average scores (I); for each pair in (2) and (3), the scores on Eg are counted only if the informant has given a score of "+2" or "+1" on Eg. The number in the parentheses indicates the number of informants counted.

<table>
<thead>
<tr>
<th></th>
<th>(2a)</th>
<th>(2b)</th>
<th>(3a)</th>
<th>(3b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eg_1</td>
<td>+1.38 (13)</td>
<td>+1.42 (12)</td>
<td>−2.00 (12)</td>
<td>−1.91 (11)</td>
</tr>
</tbody>
</table>

(39) The crucial part of CFJ-40: Adjusted average scores (II); for each pair in (2) and (3), the scores are counted only if the informant has given a score of "+2" on Eg. The number in the parentheses indicates the number of informants counted.

<table>
<thead>
<tr>
<th></th>
<th>(2a)</th>
<th>(2b)</th>
<th>(3a)</th>
<th>(3b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eg_1</td>
<td>+2.00 (5)</td>
<td>+2.00 (5)</td>
<td>−2.00 (5)</td>
<td>−1.80 (5)</td>
</tr>
</tbody>
</table>

5. Proper Binding Condition (PBC)

An often-held view is that the raising is necessarily involved in the derivation of sentences of the form in (6), and it is also often claimed, and fairly widely accepted, that the Proper Binding Condition (PBC) gets violated in the derivation of sentences corresponding to (41), as they are analyzed as in (42).8

(40) NP-NOM NP-ACC … V1 that V2

(41) a. … V1 that NP-ACC NP1-NOM V2
 b. … V1 that NP-NOM NP-ACC V2

(42) a. $[[t_3 \ldots V1 \text{ that}[4 \text{ [NP1-ACC}_3 \text{ [NP1-NOM } t_4 \text{ V2]]}]]$
 b. $[[t_3 \ldots V1 \text{ that}[4 \text{ [NP1-NOM NP1-ACC}_3 \text{ [} t_4 \text{ V2]]}]$

The offending trace in (42) is shaded. The negative prediction here is that sentences of the form in (42) are unacceptable due to the PBC.

The results of an experiment on PBC effects in Japanese, however, indicate that such an hypothesis is falsified, rather remarkably, providing

8 It is, however, not immediately clear what the formal nature of this movement might be. 'Theoretically', one can propose to regard the movement in terms of notions such as (i).

(i) a. A or A'-positions
 b. theta or non-theta positions
 c. whether the movement is triggered by a formal feature

If we wanted to consider the empirical consequences of our choice, a minimal requirement imposed upon us would be that we relate this movement with another instance of movement in Japanese that has independently been shown to have the same formal property so that we would be in a position to assess the empirical consequence that the movement under discussion indeed exhibits the same clustering of properties as the latter. The proponents of the raising analysis of RtoO in Japanese (and Korean) have in fact proposed to relate the movement involved in RtoO to 'scrambling' in terms of PBC effects, as will be discussed immediately.
support for the conclusion reached in Hoji 1991: section 1. Some experiments have also been conducted on the PBC effects in Korean and their results are strikingly similar to those of the experiments on the PBC effects in Japanese. Although I will most likely be unable to discuss those CFJs in my presentation, I will be happy to discuss them during the free time.

(43) CFJ-32: Average Scores (18 informants)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2a)</th>
<th>(2b)</th>
<th>(2c)</th>
<th>(3)</th>
<th>(4a)</th>
<th>(4b)</th>
<th>(4c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>+2.00</td>
<td>+0.67</td>
<td>+2.00</td>
<td>-1.56</td>
<td>+1.00</td>
<td>+1.11</td>
<td>+0.56</td>
<td>+0.28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(5)</th>
<th>(6a)</th>
<th>(6b)</th>
<th>(6c)</th>
<th>(7)</th>
<th>(8a)</th>
<th>(8b)</th>
<th>(8c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>+1.56</td>
<td>+0.50</td>
<td>+1.94</td>
<td>-1.61</td>
<td>+0.56</td>
<td>+1.06</td>
<td>+0.89</td>
<td>-0.06</td>
</tr>
</tbody>
</table>

(44) Preliminaries (I): PBC effects in 'Scrambling' constructions in CFJ-32

<table>
<thead>
<tr>
<th>Example # in CFJ-32</th>
<th>NP-ga/wa CP V</th>
<th>NP-'scrambling'</th>
<th>CP-'scrambling'</th>
<th>PBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1), (3)</td>
<td>(2a), (6a)</td>
<td>(2b), (6b)</td>
<td>(2c), (6c)</td>
<td></td>
</tr>
<tr>
<td>Average Score</td>
<td>+2.00, +1.00</td>
<td>+0.67, +0.50</td>
<td>+2.00, +1.94</td>
<td>-1.56, -1.61</td>
</tr>
</tbody>
</table>

(45) CFJ-32: Adjusted Average Scores

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2a)</th>
<th>(2b)</th>
<th>(2c)</th>
<th>(3)</th>
<th>(4a)</th>
<th>(4b)</th>
<th>(4c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>+2.00</td>
<td>+2.00</td>
<td>+2.00</td>
<td>-1.57</td>
<td>+1.00</td>
<td>+2.00</td>
<td>+0.56</td>
<td>+0.80</td>
</tr>
<tr>
<td># of informants</td>
<td>18</td>
<td>7</td>
<td>18</td>
<td>7</td>
<td>18</td>
<td>10</td>
<td>18</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(5)</th>
<th>(6a)</th>
<th>(6b)</th>
<th>(6c)</th>
<th>(7)</th>
<th>(8a)</th>
<th>(8b)</th>
<th>(8c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>+1.56</td>
<td>+2.00</td>
<td>+1.94</td>
<td>-1.50</td>
<td>+0.56</td>
<td>+2.00</td>
<td>+0.89</td>
<td>+0.00</td>
</tr>
<tr>
<td># of informants</td>
<td>18</td>
<td>6</td>
<td>18</td>
<td>6</td>
<td>18</td>
<td>9</td>
<td>18</td>
<td>9</td>
</tr>
</tbody>
</table>

(46) Preliminaries (II): PBC effects in 'Scrambling' constructions in CFJ-32:
Adjusted scores; the scores for (2c) and (6c) by a given informant are counted only if s/he has given "+2" to (2a) and (6a), respectively. The number in the parentheses after the score indicates the number of informants counted.

9 The adjustments have been made as follows.
(i) a. If [the score of (2a)] < 2, then [the answer of (2a)] and [the answer of (2c)] will be excluded from the average.
 b. If [the answer of (6a)] < 2, then [the answer of (6a)] and [the answer of (6c)] will be excluded from the average.
(ii) a. If [the answer of (4a)] < 2, then [the answer of (4a)] and [the answer of (4c)] will be excluded from the average.
 b. If [the answer of (8a)] < 2, then [the answer of (8a)] and [the answer of (8c)] will be excluded from the average.
(47) The predicted values under the Raising Analysis

<table>
<thead>
<tr>
<th>RtoO 'base order'</th>
<th>NP-o NP-wa/ga … to V</th>
<th>NP-o … to NP-wa/ga V</th>
<th>PBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example # in CFJ-32</td>
<td>Eg: (3), (7)</td>
<td>Eg: (4a), (8a)</td>
<td>Eg: (4b), (8b)</td>
</tr>
<tr>
<td>Predicted Values</td>
<td>+1.00, +0.56</td>
<td>+1.11, +1.06</td>
<td>+0.56, +0.89</td>
</tr>
</tbody>
</table>

(48) The results of CFJ-32

<table>
<thead>
<tr>
<th>RtoO 'base order'</th>
<th>NP-o NP-wa/ga … to V</th>
<th>NP-o … to NP-wa/ga V</th>
<th>'PBC'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example # in CFJ-32</td>
<td>Eg: (3), (7)</td>
<td>Eg: (4a), (8a)</td>
<td>Eg: (4b), (8b)</td>
</tr>
<tr>
<td>Average scores</td>
<td>+2.00 (10), +2.00 (9)</td>
<td>+0.50 (10), –0.00 (9)</td>
<td></td>
</tr>
</tbody>
</table>

(49) The adjusted scores of CFJ-32 (I): On the basis of "+2" on (3) and (7).

<table>
<thead>
<tr>
<th>RtoO 'base order'</th>
<th>'PBC'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example # in CFJ-32</td>
<td>Eg*: (4c), Eg*: (8c)</td>
</tr>
<tr>
<td>Average scores</td>
<td>+2.00 (10), +2.00 (9)</td>
</tr>
</tbody>
</table>

(50) The adjusted scores of CFJ-32 (II): On the basis of "+2" on (4) and (8a).

<table>
<thead>
<tr>
<th>NP-o NP-wa/ga … to V</th>
<th>'PBC'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example # in CFJ-32</td>
<td>Eg*: (4c), Eg*: (8c)</td>
</tr>
<tr>
<td>Average scores</td>
<td>+2.00 (10), +2.00 (9)</td>
</tr>
</tbody>
</table>

(51) The adjusted scores of CFJ-32 (II): On the basis of "+2" on (4) and (8a).

<table>
<thead>
<tr>
<th>NP-o … to NP-wa/ga V</th>
<th>'PBC'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example # in CFJ-32</td>
<td>Eg*: (4c), (8c)</td>
</tr>
<tr>
<td>Average scores</td>
<td>+2.00 (6), +2.00 (7)</td>
</tr>
</tbody>
</table>

6. Concluding remarks: toward the establishment of generative grammar as an empirical science (GGES) (with progress in mind)

The emphasis placed on negative predictions makes it possible to obtain a clearer understanding of, hence how to deal with, judgmental fluctuation and
disagreement. Judgmental fluctuation on \(E_g^* \) is significant and serious; it could directly lead to the falsification of a hypothesis. Judgmental fluctuation on \(E_g \), on the other hand, is much less significant and serious. Although it could affect whether our hypothesis gets corroborated, it would not bear on whether our hypothesis is falsified. Failure to recognize this difference seems to me to have resulted in a (not uncommon, if not prevailing) attitude of not being compelled to make one's hypothesis falsifiable, which is generally accompanied by the lack of concerns for articulating what should count as a falsification of a hypothesis.

Recognizing this point perhaps helps us appreciate the real significance of a minimal pair. The preceding discussion suggests that obtaining a contrast is not sufficient for a given hypothesis to be considered plausible (let alone compelling). A contrast may obtain even when a hypothesis is falsified, in the sense defined above. If a hypothesis, combined with an independent hypothesis, predicts a specific example is an instance of \(E_g^* \), due to a proposition deduced from the hypotheses in question, there is no excuse for one not to seriously doubt one's hypothesis if many speakers accept such an example, even to varying degrees.

What we need to aspire to is obtain corroboration for our hypothesis, which necessarily includes the hypothesis not being falsified; see (13), (14), (15). Proceeding in the manner described above would make it possible to address the issues about repeatability in a much more concrete and realistic manner than has been possible in the past, as far as I can tell.10

References

10 Incidentally, the researcher's own judgments should be fairly close to the average scores (perhaps 'adjusted' scores—see (23), for example) of a CFJ, provided that the CFJ is checking a hypothesis that is on the right track and if there are not dialectal issues at stake.

7. Appendix I: 'Scrambling' and RtoO

The empirical concern of this talk was initially stated in relation to (1).

(52) (=(1))
 John-wa Mary-o Itariazin da to omotteita.
 John-TOP Mary-ACC Italian be that thought

(53) (=(2))
 a. John believed about Mary that she was Italian.
 b. John believed Mary to be Italian.

While (52) can be translated either as (slightly awkward, but acceptable) (53a) or as (more natural) (53b), I have argued for the thesis, put forth in Hoji 1991 and further defended in Takano 2003, that (53a) is a structurally more accurate English rendition of (52), pursuing the view that NP-o that corresponds to Mary-o in (52), which has been dubbed above as Mob, is 'base-generated' in the matrix clause and is not part of the embedded clause at any stage of derivation.

Since the mid 1960s, examples such as (53b) have been discussed in relation to ones like (54).

(54) John believed (that) Mary was Italian.

Among the crucial properties of English (53b) that have been noted and widely discussed are:

(55) a. The apparent object NP in the matrix clause in (53b), i.e., the NP corresponding to Mary in (53b) always corresponds to the subject of the embedded clause in (54).
 b. The NP corresponding to Mary in (53b) can be a pleonastic element or an idiom chunk.
 c. The embedded 'clause' in (53b) is limited to an infinitive.

In regard to Japanese (52), the properties listed in (56) have been noted in the literature since the mid 1970s.

(56) a. NP2-o in (57a) below need not correspond to the subject of the embedded clause in (57b)\(^{11}\); it may correspond to an argument inside

\(^{11}\) The point is illustrated in Hoji 1991: section 3, (19) by the following examples, where C. Kitagawa 1977 is cited.

(i) a. Watasi-wa ano hito-o [CP [pro, musuko san]-ga moo daigakusei
 I-TOP that person-ACC son-NOM already college student
da to] (bakari) omotte imasita
 is that thought
 'I thought of that person, that {her/his} son is already a college student.'
 b. Watasi-wa sono zyookamati-o [CP [NP doowa-no Kurushima Takehiko-san-no
 I-TOP that castle city, that NP had been, lord.
 senzo]-ga {??pro/soko,-no} tonosama datta to] omotte ita
 'I thought of that castle city, that NP had been its, lord.'
a complex NP contained in the embedded clause; it need not correspond to anything (overtly expressed)\(^{12}\).

b. \(NP\)-o in (57a) below cannot be a pleonastic element, an idiom chunk, or something that is, semantically, part of a predicate; see (71a) below.

c. It is not clear that the embedded 'clause' in (57b), corresponding to (57a), is limited to an infinitive. (If the presence of a \(ga\)-marked subject NP or that of the tense marker \(-ru/-ta\) is sufficient evidence that the embedded clause in (57b) is a tensed clause, the embedded 'clause' in (57a) clearly can be tensed.)

\[(57)\]
\[\text{a. } NP1-ga \ NP2-o \ldots \ V\]
\[\text{b. } NP-ga \ [CP \ldots \ V-I \ to] \ V\]

Given that the structure of (52) (and (57a)) is as in (58a), and its basic interpretation is very much like (58b), the properties listed in (56) are as expected for examples under discussion.

\[(58)\]
\[\text{a. } NP1-ga \ NP2-o \ CP \ V\]
\[\text{b. } NP1 \ V \ about \ NP2 \ CP\]

Now consider the schematic structures in (59).

\[(59)\]
\[\text{a. } NP1-ga \ NP2-o \ [CP \ NP3-ga \ ec \ V-I \ to] \ V\]
\[\text{b. } NP1-ga \ [CP \ NP2-o \ NP3-ga \ ec \ V-I \ to] \ V\]

(59a) is the Major Object construction and (59b) contains a 'scrambled' sentence as its embedded clause. Notice that the surface forms are identical between (59a) and (59b).\(^{13,14}\)

\[c. \text{ Daitasuu no hito-ga } [sono \ hooan]-o \ [CP \ Tanaka \ moto \ syusyoo-ga} \ {?pro/sono,}\hatatuansa \ da \ to \ omoikonde \ ita
'Most people thought of that bill, that ex Prime Minister Tanaka was its, initiator.'
\[d. \text{ IBM-wa } [soko-no \ atarasii \ konpyuutaa-no \ himitu]-o \ asita-no \ kisyakaiken-de \ [CP \ Hitati-ga \ (spai-o \ tukatte) } \{pro/sore-o\} \ nusunda \ to] \ happyoo \ suru \ tomurida
'IBM intends to announce about [the secret of their new computer], at tomorrow's press interview that Hitachi stole it, (by using spies).'</dd

\(^{12}\) Hoji 1991: (42) is reproduced here, with the judgments reported there.

\[(i)\]
\[\text{a. } \text{Watasi-wa } kono \ kusuri-o \ [CP \ atama-ga \ yoku \ nar\(\text{u to}] \ (bakari) \ I-TOP \ this \ medicine-ACC \ brain-NOM \ better \ become \ that \ omoikondeita \ firmly \ believed \ 'I \ firmly \ believed \ of \ this \ medicine \ that \ (if \ we \ take \ it) \ we \ become \ smarter.'
\[\text{b. } Kono \ kusuri-ga \ atama-ga \ yoku \ nar\(\text{u } \text{(from H. Teramura's work)} \ It \ is \ true \ of \ this \ medicine \ that \ (if \ we \ take \ it) \ we \ become \ smarter.'

\(^{13}\) Once we have adopted the Major Object analysis, it follows that \(NP\)-o should not be used as the 'scrambled NP' in a 'long-distance scrambling' construction, as it is in fact pointed out in the concluding section of Hoji 1991.

\[(i)\] (Hoji 1991: section 8)
While the surface string corresponding to (59) can be of the structure in (59a), the one corresponding to (60) cannot be of the structure in (61a), provided that the only o-marked NP can 'function' as the Major Object. Hence it must be of the structure in (61b), in which the embedded clause contains a 'scrambled' sentence.

(60) \[NP1\text{-}ga \, NP2\text{-}ni \, NP3\text{-}ga \text{ ec } V\text{-}I \text{ to } V \]
where \(NP2 \) is 'related to' the embedded \(V \)

(61) a. \[NP1\text{-}ga \, NP2\text{-}ni \, [CP \, NP3\text{-}ga \text{ ec } V\text{-}I \text{ to }] \, V \]
b. \[NP1\text{-}ga \, [CP \, NP2\text{-}ni \, NP3\text{-}ga \text{ ec } V\text{-}I \text{ to }] \, V \]

Let us now consider (62).

(62) \[NP3\text{-}ga \text{ ec } V_1\text{-}I \text{ to } NP2\text{-}ni \, NP1\text{-}ga \, V_2 \]
where \(NP3 \) and \(NP2 \) are 'related to' (e.g., theta-related to) \(V_1 \)

Given the conclusion above in regard to (61), \(NP2\text{-}ni \) in (62) must be related to a position inside the embedded CP by movement. Hence, in (62) there must be an unbound trace inside the embedded CP at the sentence-initial position, either as in (63), where the embedded OS order (at the intermediate stage of derivation) is due to the PF movement of \(NP2\text{-}ni \), or as in (64), where it is due to the 'base-generation' of \(NP2\text{-}ni \) at the embedded IP-initial position (as in Ueyama's (1998) Deep OS analysis).

(63) Where \(NP3 \) and \(NP2 \) are 'related to' \(V_1 \):
 a. \[[IP \, [CP \, [IP \, NP3\text{-}ga \text{ ec } V_1\text{-}I \text{ to }]_4 \, [IP \, NP2\text{-}ni_2 \, [IP \, NP1\text{-}ga \, t_4 \, V_2\text{-}I]]] \]
 b. \[[IP \, [CP \, [IP \, t_2 \, [IP \, NP3\text{-}ga \, t_2 \, V_1\text{-}I]] \text{ to }]_4 \, [IP \, NP2\text{-}ni_2 \, [IP \, NP1\text{-}ga \, t_4 \, V_2\text{-}I]]] \]

(64) Where \(NP3 \) and \(NP2 \) are 'related to' \(V_1 \):
 \[[IP \, [CP \, [IP \, t_2 \, [IP \, NP3\text{-}ga \text{ ec } t_2 \, V_1\text{-}I \text{ to }]_4 \, [IP \, NP2\text{-}ni_2 \, [IP \, NP1\text{-}ga \, t_4 \, V_2\text{-}I]]] \]

Either way, the shaded trace in (63) and (64) would not be bound, resulting in the violation of the Proper Binding Condition.

The surface string corresponding to (65), by contrast, does not have to be analyzed as in (66) since it can be analyzed as in (67a), derived from (67b).

(65) \[NP3\text{-}ga \text{ ec } V_1\text{-}I \text{ to } NP2\text{-}o \, NP1\text{-}ga \, V_2 \]
where \(NP3 \) and \(NP2 \) are 'related to' \(V_1 \)

14 How could we attain disambiguation? (i) Reconstruction? Yes, that would force it to be (59b). (ii) Resumption? Well, if we use a small \(so\)-NP, in the terms of Ueyama 1998, we cannot distinguish between the two. But if we use an \(a\)-NP, for example, that would force it to be (59b), given that such 'resumption' is allowed in (59a), as in the case of the topic construction (and the major subject construction). (iii) The use of \(rokuna\text{-}N \) and \(NP\text{-}o\text{-}sika \) would also attain disambiguation, as we have seen.
(66) a. \[\text{[[CP [IP NP3-ga} \text{ t}_2 \text{ V}_1-\text{I}] \text{ to}]_4 \text{ [IP NP2-o}_2 \text{ [IP NP1-ga} \text{ t}_4 \text{ V}_2-\text{I}]]]\]
 b. \[\text{[[CP [IP NP3-ga} \text{ t}_2 \text{ V}_1-\text{I}] \text{ to}]_4 \text{ [IP NP2-o}_2 \text{ [IP NP1-ga} \text{ t}_4 \text{ V}_2-\text{I}]]]\]
 c. \[\text{[[CP [IP NP3-ga ec}_2 \text{ V}_1-\text{I}] \text{ to}]_4 \text{ [IP NP2-o}_2 \text{ [IP NP1-ga} \text{ t}_4 \text{ V}_2-\text{I}]]]\]

(67) a. \[\text{[[CP [IP NP3-ga ec}_2 \text{ V}_1-\text{I}] \text{ to}]_4 \text{ [IP NP2-o}_2 \text{ [IP NP1-ga} \text{ t}_2 \text{ t}_4 \text{ V}_2-\text{I}]]\]
 b. \[\text{[IP [IP NP1-ga} \text{ NP2-o}_2 \text{ [CP [IP NP3-ga ec}_2 \text{ V}_1-\text{I}] \text{ to}] \text{ V}_2-\text{I}]]\]

And this accounts for the contrast in CFJ-32 between examples corresponding to (62) and those corresponding to (65).

8. Further consequences

8.1. What must underlie the proposed analysis

Theoretically, the proposed analysis must be accompanied by the theses in (68).

(68) a. (i) is a possible structure in Japanese.
 (i) \(\text{NP1-NOM NP2-ACC CP think/believe/determine/etc.}\)
 b. It is not possible for a category in the embedded clause to be \(o\)-marked in relation to, or assigned the \(o\)-marking by an element of, the matrix clause.
 c. It is not possible for a category in the embedded clause to get raised to a position in the matrix clause where the \(o\)-marking 'takes place'.

(68b) and (68c) effectively rule out the possibility of the ECM approach and the raising approach, respectively.

We want to be able to argue that (68) is consistent with the properties of UG and the general properties of the Japanese language, and among the questions that need to be addressed are:

(69) a. What 'licenses' the \(o\)-marking on \(Mob\)? How is the mechanism in question related to UG? What kind of position does \(Mob\) occupy?
 b. What thematic role, if any, does \(Mob\) receive, and how? Again, how is the relevant property related to the properties of UG?

8.2. Some structure-independent predictions

\(Mary-o\) in (6) has been treated on a par with \(about\ Mary\) in (70) in English, at least on an observational level, along the lines of Hoji 1991, and Takano 2003.

(70) John firmly believed about Mary [\(CP\) that she was an Italian].

A question remains as to whether we want to assign a formal content to this observational point. If we decide to do so, we might be able to make some additional predictions. We might, for example, assume that due to the formal (though presumably not structural) property of \(NP-o\) in the 'construction' in question (which, by hypothesis, is the same as that of \(about\ NP\) in (70)) the
grammar gives the following instruction, so to speak, to the language user).15

(71) a. \textit{NP-o} in the 'construction' in question, i.e., \textit{Mob}, denotes some entity about which one can hold some belief/assumption/judgment/etc. (depending upon the predicate used).

b. (What appears to be) the CP complement of the verb in the 'construction' in question denotes a property that can be attributed to some entity, reasonably and meaningfully.

Consider again the English examples in (2), repeated here, and their schematic representations in (72).

(2) a. John believed about Mary that she was Italian.
 b. John believed Mary to be Italian.

(72) a. A believes about B that IP
 b. A believes B to be VP

As noted, one of the hallmark properties of the construction in (72b) in English (and other languages that have a structure formally corresponding to (72b) is that \textit{B} in (72b) can be a pleonastic element and/or an idiom chunk, which clearly would not satisfy the condition imposed on \textit{Mob} in (71a). A prediction is therefore that if we place as \textit{Mob} something that is like a pleonastic element, an idiom chunk, or any other element that cannot satisfy the condition in (71b), the resulting sentence is unacceptable. Japanese does not seem to have an (overt) pleonastic element, and it is not entirely clear how to identify idioms. But, to the extent that we can identify such elements, the prediction does seem to be borne out.16

15 Tomoda's (1976-77: 372) represents the meaning of \textit{NP-o} in question, as \textit{NP-ni tuite} (regarding \textit{NP}). The intuitions recorded in (71) have been expressed in various ways in the literature.

(i) a. (Hong 1990: 223)
 "The object of the special class of (RTO) predicate should 'denote a specific thing, in the sense that its reference is registered in the speaker's mind so that it can be identified by the speaker (Lee 1989:12)."
 b. The semantic relation between the ACC-marked NP and the following IP in RtoO is the same as that between a major subject and an IP that follows it.

(iii) (Hoji 1991: (52))
 a. *John believes of it that it (has) rained.

16 Hoji 1991 makes an attempt to provide an argument of this sort on the basis of observations such as the following, perhaps taking the \textit{ga} marked NP in (v) as part of a predicate.

(i) (Hoji 1991: (50))
 John believes it to have rained (while he was asleep).

(ii) (Hoji 1991: (51))
 a. Watasi-wa [\text{CP} ame-ga (neteiru aida-ni) hutta to] omotta.
 I-TOP rain-NOM while sleeping fell that thought
 'I thought that it [had] rained (while I was asleep).'
 b. *Watasi-wa ame-o (neteiru aida-ni) hutta to omotta.
8.3. Further support for the Major Object Hypothesis?

There are other 'phenomena' that one might consider as providing support for the Major Object hypothesis, at least to the extent that they provide support for the thesis that Mob belongs to the matrix clause in RtoO. I will make brief remarks on each of the potential arguments for the Major Object hypothesis, noting that they are not as compelling as one would wish them to be.

8.3.1. Adverb Placement
CFJ-23 by Emi Mukai (12 examples, 15 informants)
Conclusion: Repeatability in regard to the judgments expected of the widely-held generalization (see Kuno 1976: (21) and (22), for example) is rather low. (The result is consistent with the hypothesis that Japanese allows PF movement.)

8.3.2. Idiom chunks
CFJ-14 (12 relevant examples, 8 informants); see the discussion above. Conclusion: The weakness of the argument here is that we do not have an independent means to determine what is to be regarded as an idiom or other similar expressions beyond our intuitions. But the paradigms (see footnote 16, for example) and the results of CFJ-14 do seem to provide support for the Major Object hypothesis.

8.3.3. Inverse scope
The relevant paradigms and observations regarding inverse scope, which go back to Kuno 1976: (32), (37), and (39), are also compatible with the Major Object hypothesis. Given Hayashishita's (including his 2004 dissertation)

b. John believes of Mary that she VP.

(iv) (Hoji 1991: (53))

 John-TOP strange smell-NOM always do that thought
 'John thought that it (always) smelled strange.'

b. *John-wa henna nioi-o (itumo) suru to omotteita

(v) (Hoji 1991: (54))

a. Ame-ga hutta.
 'It rained.'

b. Henna nioi-ga suru.
 'It smells funny.'

c. Oto-ga suru.
 'There is a sound.'

17 Takano 2003: 822 also provides the examples in (i) in support of the same point.

(i) (Takano 2003: (79))

 John-TOP there-to hand-NOM get:around-not that said
 'John said that he couldn't take good care of it.'

b. John-wa te-ga soko-made mawar-anai to itta.
 John-TOP hand-NOM there-to get:around-not that said

 John-TOP hand-ACC there-to get:around-not that said
conclusion that the crucial aspect of what gives rise to inverse scope is not grammatical in nature, however, we cannot expect to be able to make a negative prediction of the sort discussed in the earlier sections.

8.3.4. Local disjointness effects
The original argument here also goes back to Kuno 1976. The local disjointness effects (the effects of so-called Principle B of the Binding Theory) show up clearly only if we consider the availability of bound variable anaphora of a certain type, as discussed in some depth in Hoji 1995. Furthermore, even if we concentrate on the availability of a certain type of bound variable anaphora, the possibility of major subjects blurs the effects in question, as discussed in Hoji 2003. It seems that the problem is in part due to the fact that we do not yet have a satisfactory theoretical characterization of the effects in question. For this reason, I do not think we are yet in a position to have a CFJ on local disjointness effects whose results would corroborate our hypothesis.

9. Appendix II: Further remarks on syntactic experiments

9.1. The significance of a negative prediction
--how a hypothesis that makes a 'positive prediction' can be falsified
--what significance we could assign to it

9.2. Remarks on alternative hypotheses
9.2.1. Negative predictions
If we are to assess alternative hypotheses such as (73), we must consider whether a particular implementation of each of (73) makes a negative prediction.

(73) a. the ECM analysis
 b. the Raising analysis

If (73a), for example, is taken to be the only option, it perhaps makes a negative prediction, at least to the extent that (74) is independently demonstrated.

(74) Something is possible with α in relation to β only if α and β are clause-mates or α is a major constituent of β, with β being a clause (CP, IP, vP, or VP?)\(^{18}\)

If (73a) is a possible analysis in addition to the Major Object analysis, it is not clear if we make any negative predictions. Furthermore, the judgments that confirm the negative predictions under the Major Object hypothesis will remain a mystery under such an analysis.

9.2.2. An 'edge' analysis
--Given Kataoka’s (2004, to appear) hypothesis about rokuna-N, the result of the CFJ with rokuna-N (i.e., CFJ-16 (8 examples, 28 informants) is compatible with

\(^{18}\) Inverse scope is a potential case of this sort.
an 'edge' analysis as long as *Mob* is assumed/stipulated to occur outside the scope of the embedded Neg at LF; for example, *Mob* may be located at the edge of the embedded CP (such as Spec of CP).

-- The result of the CFJs with *NP-cm-sika* (CFJ-38 (16 examples, 16 informants) and CFJ-40 (16 examples, 7 informants)) is more problematic to the 'edge' analysis for the following reason. The Deep DL in the sense of Ueyama 1998 is outside the scope of Neg at LF; it is quite high on the clausal structure. *NP-cm-sika* can occur as a Deep DL, as demonstrated by Kataoka (2004, to appear). *NP-cm-sika* can also occur as a major subject. Yet, *NP-cm-sika* cannot occur as *Mob* unless the matrix clause has Neg, i.e., Neg in the embedded clause does not 'license' *NP-cm-sika* occurring as *Mob*. In order to accommodate all these facts, the 'edge' analysis would have to stipulate that the position of *Mob* is higher than what Deep DL occupies or what the major subject occupies while being in the embedded clause.

-- Once such a stipulation is made, one should not be surprised if the 'edge' analysis and the Major Object analysis would have the same empirical consequences not only in regard to *NP-o-sika* and *rokuna-N* but also in regard to local disjointness effects and inverse scope. I.e., the two analyses will in that case end up being notational variants, with respect to these empirical issues.

-- If one proposed to move the NP from 'its base position' to the edge of CP, one would make a negative prediction re. PBC effects, as in Hiraiwa 2002. But the prediction is disconfirmed, as we have seen. If one proposed to base-generate *Mob* in the edge of CP, on the other hand, it would not be clear what kind of position that would be and how an NP in such a position can be based-generated at the edge of CP and have the property noted in (71a).

9.3. The significance of the results of a given experiment

Some remarks are perhaps in order on the significance of the results of a given experiment. Suppose a hypothesis H1, in conjunction with another hypothesis H2 that has been independently established, makes a negative prediction. There must be a set of specifications by following which one can construct examples that are predicted to be unacceptable (under a certain interpretation) as well as those that are not.

In the terms of (13) and (15), repeated below, there are three logically possible outcomes of a specific instance of an experiment that has been designed by following such specifications.

(13) **Falsification**

A hypothesis is *falsified* iff the average score for the example that is predicted to be unacceptable, i.e., the average score for E_g^*, is greater than -1.0.

(15) **Corroboration**

A hypothesis is *corroborated* iff the difference between the average score on E_g^* and that on E_g (henceforth $Dif-E_g$) is greater than 3.

(75) Three possible outcomes of an experiment
Let EP stand for an experimental design as specified by the hypotheses in question, distinguishing it from an actual instance of it. Outcome B in (75) is predicted not to come about in *any instance* of EP. Hence outcome B in a single instance of EP would seriously undermine H1. Outcomes A and C would have rather different significance. Clearly, outcome C, with H1 having failed to be *corroborated*, would not have significance beyond H1 not being falsified; we are not certain that what is responsible for the unacceptable status of Eg^* is indeed as stated in H1. Outcome A has a much greater significance; not only has H1 not been falsified, there is indication that H1 seems to correctly identify what is responsible for the unacceptability of Eg^*.

It must be emphasized, however, the significance of outcome A in *one instance* of EP is qualitatively different from that of outcome B in *one instance* of EP. After all, what is predicted is the non-occurrence of outcome B in *any instance* of EP, hence what is predicted is either A or C. It is, however, not predicted whether we will have outcome A or outcome C. It is for this reason that we should not be content with obtaining outcome A in *one instance* of EP (or even in more than one instance of EP). We should always be willing to test H1 by *other instances* of EP, and expect and in fact encourage other researchers to conduct experiments in accordance with the specifications. And we should be prepared to take very seriously *any instance* of EP that yields outcome B.

19 Assuming, of course, that the number of informants is *large enough* by some reasonable standard, about which we might have to turn to a field where there is an agreement on the relevant issues. We can also convert the more or less 'raw' data presented above to the figures that have undergone some statistical analysis that is standardly accepted in the field.

20 Kitagawa and Ueyama 2004: 5.2.5 illustrates negative claims that can potentially yield outcome A in a specific instance of EP, by 'controlling' (or by not controlling?) the pragmatic factors. The alleged unacceptability of (i) and (ii), reported in Harada 1973, Sugioka 1984, 150, and Miyagawa 1989, 151, 158 is discussed in Kitagawa and Ueyama 2004: 208, where (i) is given without "(yotte)."

(i) (Miyagawa 1989: 151, (8), with the judgment reported there)
 *Ziroo-ga Taroo-ni (yotte) Hanako-ni yob-ase-rare-ta.

(ii) (Miyagawa 1989: 158, (37b))
 b. *Hanako-wa Taro-ni sasoi-ta-gar-are-te iru.

Kitagawa and Ueyama (2004: 208-211), drawing from Kitagawa and Kuroda 1991, point out that examples of the same form as (i) can be readily acceptable if an appropriate pragmatic context is supplied, which would be unexpected if the marginality/unacceptability detected for (i) were due to a grammatical factor as argued in Miyagawa 1989, where the status of (i) is attributed to the failure to Case absorption, (presumably) under an independent hypothesis that passives in Japanese necessarily involves the A-movement of the internal argument of the verb which the passive morpheme -rare is attached to. (I should note that arguments are presented in Hoji to appear that the latter hypothesis cannot be maintained.) A similar point is made in Kitagawa and Ueyama 2004 in regard to the status of (ii) as well, to the extent that it is found to be marginal.
10. Appendix III: Other experiments

10.1. PBC effects in Korean
CFJ-33 by Hyuna Byun (18 examples, 15 informants)
CFJ-31 by Seonkyung Jeon (20 examples, 13 informants)
CFJ-25 by Yonjoon Cho (42 examples, 25 informants)

10.2. "Indeterminate Agreement"
CFJ-30 by Maki Irie (6 relevant examples, 14 informants)
CFJ-34 by Yukiko Tsuboi (21 examples, 21 informants)

Suppose that an instance of EP yields outcome A for the negative claim/prediction regarding (i), for example. Given what is pointed out in Kitagawa and Ueyama 2004, the status of E_g^* in that case is due to a pragmatic rather than grammatical factor, which one can show by another instance of the same EP where, with a sufficient pragmatic context, E_g^* of the same structural property will be judged to be far better than "$-1." The discussion in Kitagawa and Ueyama 2004 thus provides a basis for a nice illustration of the point just made in the text. The argumentation in Miyagawa 1989 and other similar cases will also tell us a great deal about the danger of assigning significance to a contrast itself without paying attention to falsification and corroboration in the sense discussed above.